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L Continuous Valuations

Continuous Valuations

v =map v: O(X) = R such that:

v(@) = 0 (strictness)
UcvVv = v(U)<y(V) (monotonicity)
v(UuV)+v(UnV) = vU)+v(V) (modularity)
V(U;rel U) = sup,Te, v(U;) (continuity)

m Similar to measures, except give weights to

m Needed in semantics of programming languages
[JonesPlotkin89]

m Under assumptions on X, cont. valuation=regular measure
[KeimelLawson05].
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L Continuous Valuations

The Weak Topology

Let RJ; = R" with (opens = (t, +o0]).

Definition
Let V(X) = set of continuous valuations of X,

with the ,
coarsest making v — [ h(x)dv continuous, for every continuous h.

Subbasic opens:

[h>r]={rveV(X)| /h(X)dl/ >r}

m As the usual weak topology, except test functions h are
continuous (=lsc).
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L Representation Theorems

A Riesz Representation Theorem

Write  C(Y) = space of continuous maps [Y — @Jr] (=lsc)
Y* = subspace of linear continuous maps

Theorem (Kirch93, Tix95)

The following is a

G — AU€O(X)-G(xu)
e(X)* V(X)
AheC(X)- [, h(x)dv «— v

m No condition on X

m Easy proof
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L Representation Theorems

The Schroder-Simpson Representation Theorem

Write C(Y) = space of continuous maps [Y — R '] (=lsc)
Y* = subspace of linear continous maps

Theorem (SchroderSimpson05)

The following is an of cones:
h — AeV(X)- [, cx h(x)dv
e(X) V(X)*

m No condition on X

m Schréder and Simpson's proof [Simpson09] was elaborate
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L Representation Theorems

Topological Cones

A (C,+,.) is as a vector space,
except scalar product r.c is with reals r.

cone with +: C x C — C, .: RY x C — C continuous.

m Example: V(X), weak topology

m Non-example: C(X), Scott topology (unless X core-compact)
... product not jointly continuous

m Linear maps: ¥(>; rivi) = >, riv(vi) for r;
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L Representation Theorems

The “obvious” way to a proof

h — AWEV(X): [, o x h(x)dv
C(X) V(X)*

m Main task: given ¢: V(X) — R" linear continuous,
find h € C(X) such that i(v) = [, _y h(x)dv for every v

m If hexists, then ¥(dx) = [ h(x)ddox = h(x)
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L Representation Theorems

The “obvious” way to a proof

h — AWEV(X): [, o x h(x)dv
C(X) V(X)*

m Main task: given ¢: V(X) — R" linear continuous,
find h € C(X) such that i(v) = [, _y h(x)dv for every v

m If hexists, then ¥(dx) = [ h(x)ddox = h(x)
= So possible choice: h(x) = 1(dx)

m Need to show
[ w(dv =) (1)

for every v € V(X) ... really
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L Representation Theorems

The “obvious” way to a proof (2)

Let's try and show (1):

/X BBy = H(v)

m Obvious if v = > aidy, ( )
m Easy for v (directed sup of simple valuations), by
continuity

m Problem: not all continuous valuations are quasi-simple.



A Short Proof of the Schréder-Simpson Theorem S Z"fv"

L Representation Theorems

Previous proofs

m [SchroderSimpson 05], [Simpson 09]:
elaborate series of deep results and finely bounding inequalities
m [Keimel 12]: imitates classical proof of similar,
measure-theoretic theorem:;
develops nice theory of quasi-uniform separation in
(quasi-uniform) cones.
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L Representation Theorems

Previous proofs

m [SchroderSimpson 05], [Simpson 09]:
elaborate series of deep results and finely bounding inequalities

m [Keimel 12]: imitates classical proof of similar,
measure-theoretic theorem:;
develops nice theory of quasi-uniform separation in
(quasi-uniform) cones.

m Our proof: look at the weak open 1 ~1(1, +o]
-must be of the form U;c, Ni1[hy > ry]
.. we can take rj = 1;
.use Lemma 1 to eliminate unions
...use Lemma 2 to eliminate intersections
.50 (1, +oo] = [h > 1]: this is the right h.
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L The proof

Proof, Lemma 1

A surprising observation (mostly due to [Keimel12])

Lemma 1 (Linear cont. ¢ cannot tell between sup [ and [ sup)

Let b € €(X), i € I. TFAE:
(1) (v) = sup; [ hi(x)dv for every v
(2) ¥(v) > [, sup; hi(x)dv for every v

Note: sup; not directed, sup; [ hi(x)dv # [ sup; hi(x)dv
Proof (1/2). Only 1 = 2 is non- tr|V|aI

m Trick 1. Every h; directed sup of step functions
so can assume each h; step, = Zk Aik X Uy

m Trick 2. sup;¢; = supﬁ finite C1 SUPjeJ
by continuity of [, can assume / finite.
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L The proof

Proof, Lemma 1

A surprising observation (mostly due to [Keimel12])

Lemma 1 (Linear cont. ¢ cannot tell between sup [ and [ sup)

Let h; € €(X), i € I. TFAE:
(1) ¥(v) = sup; [ hi(x)dv for every v
(2) ¥(v) > [, sup; hi(x)dv for every v
Proof (2/2). Assume h; = ", aiuxu,, | € [ finite.
m Let C,, be atoms of Boolean algebra of sets generated by Uy

m On each C,, h; constant = aj,
so [ sup; hi(x)dv|c, = max; aimv(Cp)
= sup; [ hi(x)dyc,

By 1, ¢(vc,) > fx sup; hi(x)dvc,
Since 7 additive and v =} v|c,, 2 follows.
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L The proof

Proof, Lemma 1

A surprising observation (mostly due to [Keimel12])

Lemma 1 (Linear cont. ¢ cannot tell between sup [ and [ sup)

Let b € €(X), i € I. TFAE:
(1) o(v) > sup; [ hi(x)dv for every v
(2) ¥(v) = [, sup; hi(x)dv for every v

Lemma 1, Corollary

™Y1, +00] = Use [hi > 1] = ¢~ 1(1, +00] = [h > 1] with h = sup; h;.

Proof. C obvious. For DO:
m [h; > 1] C (1, +oo] implies ¥(v) > f hi(x)dv for all v, i
m So 1 holds, hence 2: 4(v) > [ h(x)
mifvelh>1], () > [ h(x)dv>1, sovep (1, +o]
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L The proof

Proof, Lemma 2

If Nj=y[h > 1] € %=1, +o0],
there is h € €(X) such that (7_;[h; > 1]C [h > 1] C P»~1(1, +00]

Proof.
m Let F(v f hi(x ,fX hn(x)dv)
~
in R

m Separate by A(C) = >, 7;¢; linear continuous
(e.g. [Keimel 2006])

u Let h - Z ’ylh NOte F(comple‘ment of ¢1(1, +oc])
fx h( dl/ = Z Yj f h dy — /\(F( )) cc‘mvex non-empty

Inequalities foIIows ‘
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L The proof

End of proof

Let ¢ € V(X)",  write ¥~ 1(1, 4+00] as U, N7y [hy > 1].

Lemma 2 (recap)

There is h; € €(X) s.t. (iZy[hy > 1] € [hi > 1] C ¢ (1, +oc]

So ¢ (1, +00] = Ujg[hi > 1]
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L The proof

End of proof

Let ¢ € V(X)",  write ¥~ 1(1, 4+00] as U, N7y [hy > 1].

Lemma 2 (recap)

There is h; € €(X) s.t. (iZy[hy > 1] € [hi > 1] C ¢ (1, +oc]

Lemma 1, Corollary
Then 1~1(1, +o0] = [h > 1] with h = sup; h;.

Forall v, t, (v) >t iffv/t € = Y(1, 400
iff v/t € [h> 1] iff [ h(x)dv > t.
So ¢(v) = [ h(x)dv. O
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L The proof

Recap

Given ¢ € V(X)",
there is an h € C(X) such that ¢(v) = [ h(x (1)

This h derived from the shape of weak opens ¢, N1 [hj > rj]
..and taking v = d, in (1) implies h(x) = 1(0x).
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L The proof

Recap

We have proved:

Theorem (SchréderSimpson05)

The following is an of cones:
h — AeV(X)- [, cx h(x)dv
e(X) V(X)*
Ax-(0x) +— 1
Notes:

m V(X)" = C(X) (here) + V(X) = C(X)" (Riesz-Kirch-Tix)

= V(X) and C(X) are dual cones (€(X) with weak* topology)
m No assumption needed on X.
m Short proof

m Questions?
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