

A Short Proof of the Schröder-Simpson Theorem

Jean Goubault-Larrecq

Summer Topology Conference — July 23-26, 2013

Continuous Valuations

Continuous Valuations

Definition

Continuous valuation $\nu = \text{map } \nu \colon \mathfrak{O}(X) \to \overline{\mathbb{R}}^+$ such that:

$$\begin{array}{rcl} \nu(\emptyset) &=& 0 \quad ({\rm strictness}) \\ U \subseteq V &\Rightarrow& \nu(U) \leq \nu(V) \quad ({\rm monotonicity}) \\ \nu(U \cup V) + \nu(U \cap V) &=& \nu(U) + \nu(V) \quad ({\rm modularity}) \\ \nu(\bigcup_{i \in I}^{\uparrow} U_i) &=& \sup_{i \in I}^{\uparrow} \nu(U_i) \quad ({\rm continuity}) \end{array}$$

- Similar to measures, except give weights to opens.
- Needed in semantics of programming languages [JonesPlotkin89]
- Under assumptions on X, cont. valuation=regular measure [KeimelLawson05].

Continuous Valuations

The Weak Topology

Let
$$\overline{\mathbb{R}}_{\sigma}^+ = \overline{\mathbb{R}}^+$$
 with Scott topology (opens = $(t, +\infty]$).

Definition

Let $\mathbf{V}(X) =$ set of continuous valuations of X, with the weak topology, coarsest making $\nu \mapsto \int_{X} h(x) d\nu$ continuous, for every continuous h. Subbasic opens:

$$[h > r] = \{\nu \in \mathbf{V}(X) \mid \int_X h(x) d\nu > r\}$$

■ As the usual weak topology, except test functions h are continuous to R⁺_σ (=lsc).

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Representation Theorems

A Riesz Representation Theorem

Write
$$C(Y) =$$
 space of continuous maps $[Y \to \overline{\mathbb{R}}^+]$ (=lsc)
 $Y^* =$ subspace of linear continuous maps

Theorem (Kirch93, Tix95)

The following is a homeomorphism: $\mathbb{C}(X)^* \xrightarrow[]{G \longmapsto \lambda U \in \mathbb{O}(X) \cdot G(\chi_U)}{\swarrow} \mathbf{V}(X)$

No condition on X at all

Easy proof

The Schröder-Simpson Representation Theorem

Write
$$C(Y) =$$
 space of continuous maps $[Y \to \overline{\mathbb{R}}^+]$ (=lsc)
 $Y^* =$ subspace of linear continous maps

Theorem (SchröderSimpson05)

The following is an isomorphism of cones: $\mathbb{C}(X) \xrightarrow{h \longmapsto \lambda \nu \in \mathbf{V}(X) \cdot \int_{x \in X} h(x) d\nu} \mathbf{V}(X)^*$

- No condition on X at all
- Schröder and Simpson's proof [Simpson09] was elaborate

Topological Cones

Definition

A cone (C, +, .) is as a vector space, except scalar product r.c is with non-negative reals r. Topological cone = cone with $+: C \times C \to C, .: \mathbb{R}^+_r \times C \to C$ continuous.

• Example: V(X), weak topology

Non-example: C(X), Scott topology (unless X core-compact) ... product not *jointly* continuous

• Linear maps:
$$\psi(\sum_i r_i \nu_i) = \sum_i r_i \psi(\nu_i)$$
 for $r_i \ge 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Representation Theorems

The "obvious" way to a proof

$$\mathfrak{C}(X) \xrightarrow[]{h \mapsto \lambda \nu \in \mathbf{V}(X) \cdot \int_{x \in X} h(x) d\nu}{?} \mathbf{V}(X)^*$$

Main task: given $\psi \colon \mathbf{V}(X) \to \overline{\mathbb{R}}^+$ linear continuous, find $h \in \mathcal{C}(X)$ such that $\psi(\nu) = \int_{x \in X} h(x) d\nu$ for every ν

• If h exists, then
$$\psi(\delta_x) = \int_x h(x) d\delta_x = h(x)$$

The "obvious" way to a proof

$$\mathfrak{C}(X) \xrightarrow[?]{h \longmapsto \lambda \nu \in \mathbf{V}(X) \cdot \int_{x \in X} h(x) d\nu} \mathbf{V}(X)^*$$

- Main task: given $\psi \colon \mathbf{V}(X) \to \overline{\mathbb{R}}^+$ linear continuous, find $h \in \mathcal{C}(X)$ such that $\psi(\nu) = \int_{x \in X} h(x) d\nu$ for every ν
- If h exists, then $\psi(\delta_x) = \int_x h(x) d\delta_x = h(x)$
- So only one possible choice: $h(x) = \psi(\delta_x)$
- Need to show

$$\int_{x} \psi(\delta_{x}) d\nu = \psi(\nu) \tag{1}$$

for every $\nu \in \mathbf{V}(X)$... really hard.

The "obvious" way to a proof (2)

Let's try and show (1):

$$\int_{\mathsf{x}} \psi(\delta_{\mathsf{x}}) d\nu = \psi(\nu)$$

- Obvious if $\nu = \sum_{i=1}^{m} a_i \delta_{x_i}$ (simple)
- Easy for ν quasi-simple (directed sup of simple valuations), by continuity

Problem: not all continuous valuations are quasi-simple.

Representation Theorems

Previous proofs

- [SchröderSimpson 05], [Simpson 09]: elaborate series of deep results and finely bounding inequalities
- [Keimel 12]: imitates classical proof of similar, measure-theoretic theorem; develops nice theory of quasi-uniform separation in (quasi-uniform) cones.

Previous proofs

- [SchröderSimpson 05], [Simpson 09]: elaborate series of deep results and finely bounding inequalities
- [Keimel 12]: imitates classical proof of similar, measure-theoretic theorem; develops nice theory of quasi-uniform separation in (quasi-uniform) cones.
- Our proof: look at the weak open ψ⁻¹(1, +∞] ... must be of the form ⋃_{i∈I} ∩ⁿ_{j=1}[h_{ij} > r_{ij}] ... we can take r_{ij} = 1; ... use Lemma 1 to eliminate unions ... use Lemma 2 to eliminate intersections ... so ψ⁻¹(1, +∞] = [h > 1]: this is the right h.

Proof, Lemma 1

A surprising observation (mostly due to [Keimel12])

Lemma 1 (Linear cont. ψ cannot tell between sup \int and \int sup)

Let $h_i \in \mathcal{C}(X)$, $i \in I$. TFAE: (1) $\psi(\nu) \ge \sup_i \int_X h_i(x) d\nu$ for every ν (2) $\psi(\nu) \ge \int_X \sup_i h_i(x) d\nu$ for every ν

Note: \sup_i not directed, $\sup_i \int_x h_i(x) d\nu \neq \int_x \sup_i h_i(x) d\nu$. **Proof (1/2).** Only $1 \Rightarrow 2$ is non-trivial.

Trick 1. Every h_i directed sup of step functions so can assume each h_i step, $= \sum_k a_{ik} \chi_{U_{ik}}$

Proof, Lemma 1

A surprising observation (mostly due to [Keimel12])

Lemma 1 (Linear cont. ψ cannot tell between sup \int and \int sup)

Let $h_i \in \mathcal{C}(X)$, $i \in I$. TFAE: (1) $\psi(\nu) \ge \sup_i \int_X h_i(x) d\nu$ for every ν (2) $\psi(\nu) \ge \int_X \sup_i h_i(x) d\nu$ for every ν

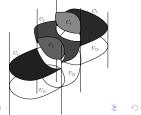
Proof (2/2). Assume $h_i = \sum_k a_{ik} \chi_{U_{ik}}$, $i \in I$ finite.

• Let C_m be atoms of Boolean algebra of sets generated by U_{ik}

• On each
$$C_m$$
, h_i constant = a_{im}
so $\int_x \sup_i h_i(x) d\nu|_{C_m} = \max_i a_{im} \nu(C_m)$
= $\sup_i \int_x h_i(x) d\nu|_{C_m}$

• By 1, $\psi(
u_{|C_m}) \geq \int_x \sup_i h_i(x) d
u_{|C_m}$

• Since ψ additive and $\nu = \sum_{m} \nu_{|C_m}$, 2 follows.



Proof, Lemma 1

A surprising observation (mostly due to [Keimel12])

Lemma 1 (Linear cont. ψ cannot tell between sup \int and \int sup)

Let $h_i \in \mathcal{C}(X)$, $i \in I$. TFAE: (1) $\psi(\nu) \ge \sup_i \int_X h_i(x) d\nu$ for every ν (2) $\psi(\nu) \ge \int_X \sup_i h_i(x) d\nu$ for every ν

Lemma 1, Corollary

 $\psi^{-1}(1,+\infty] = \bigcup_{i \in I} [h_i > 1] \Rightarrow \psi^{-1}(1,+\infty] = [h > 1]$ with $h = \sup_i h_i$.

Proof. \subseteq obvious. For \supseteq :

- $[h_i > 1] \subseteq \psi^{-1}(1, +\infty]$ implies $\psi(\nu) \ge \int_x h_i(x) d\nu$ for all ν , i
- So 1 holds, hence 2: $\psi(\nu) \ge \int_x h(x) d\nu$.
- If $\nu \in [h > 1]$, $\psi(\nu) \ge \int_x h(x) d\nu > 1$, so $\nu \in \psi^{-1}(1, +\infty]$.

Proof, Lemma 2

Lemma 2

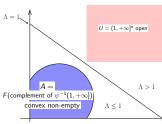
If $\bigcap_{j=1}^{n} [h_j > 1] \subseteq \psi^{-1}(1, +\infty]$, there is $h \in \mathcal{C}(X)$ such that $\bigcap_{j=1}^{n} [h_j > 1] \subseteq [h > 1] \subseteq \psi^{-1}(1, +\infty]$

Proof.

• Let
$$F(\nu) = (\int_x h_1(x) d\nu, \cdots, \int_x h_n(x) d\nu)$$

in $\overline{\mathbb{R}}^{+n}$

- Separate by $\Lambda(\vec{c}) = \sum_{j} \gamma_{j} c_{j}$ linear continuous (e.g. [Keimel 2006])
- Let $h = \sum_{j} \gamma_{j} h_{j}$. Note $\int_{x} h(x) d\nu = \sum_{j} \gamma_{j} \int_{x} h_{j}(x) d\nu = \Lambda(F(\nu))$ Inequalities follows.



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

└─ The proof

End of proof

Let
$$\psi \in \mathbf{V}(X)^*$$
, write $\psi^{-1}(1, +\infty]$ as $\bigcup_{i \in I} \bigcap_{j=1}^{n_i} [h_{ij} > 1]$.

Lemma 2 (recap)

There is $h_i \in \mathfrak{C}(X)$ s.t. $\bigcap_{j=1}^{n_i} [h_{ij} > 1] \subseteq [h_i > 1] \subseteq \psi^{-1}(1, +\infty]$

So
$$\psi^{-1}(1, +\infty] = \bigcup_{i \in I} [h_i > 1]$$

End of proof

Let
$$\psi \in \mathbf{V}(X)^*$$
, write $\psi^{-1}(1, +\infty]$ as $\bigcup_{i \in I} \bigcap_{j=1}^{n_i} [h_{ij} > 1]$.

Lemma 2 (recap)

There is $h_i \in \mathfrak{C}(X)$ s.t. $\bigcap_{j=1}^{n_i} [h_{ij} > 1] \subseteq [h_i > 1] \subseteq \psi^{-1}(1, +\infty]$

So
$$\psi^{-1}(1, +\infty] = \bigcup_{i \in I} [h_i > 1]$$

Lemma 1, Corollary

Then
$$\psi^{-1}(1, +\infty] = [h > 1]$$
 with $h = \sup_i h_i$.

For all
$$\nu$$
, t , $\psi(\nu) > t$ iff $\nu/t \in \psi^{-1}(1, +\infty)$
iff $\nu/t \in [h > 1]$ iff $\int_{x} h(x) d\nu > t$.

So $\psi(\nu) = \int_x h(x) d\nu$.

└ The proof

Given $\psi \in \mathbf{V}(X)^*$, there is an $h \in \mathcal{C}(X)$ such that $\psi(\nu) = \int_x h(x) d\nu$ (1)

This *h* derived from the shape of weak opens $\bigcup_{i \in I} \bigcap_{j=1}^{n} [h_{ij} > r_{ij}]$...and taking $\nu = \delta_x$ in (1) implies $h(x) = \psi(\delta_x)$.

Recap

We have proved:

Theorem (SchröderSimpson05)

The following is an isomorphism of cones:

$$\mathcal{C}(X) \xrightarrow[\lambda x \cdot \psi(\delta_x) \longleftrightarrow \psi]{} \mathbf{V}(X) \overset{h \longmapsto \lambda \nu \in \mathbf{V}(X) \cdot \int_{x \in X} h(x) d\nu}{} \mathbf{V}(X)^*$$

Notes:

- $\mathbf{V}(X)^* \cong \mathcal{C}(X)$ (here) + $\mathbf{V}(X) \cong \mathcal{C}(X)^*$ (Riesz-Kirch-Tix) ⇒ $\mathbf{V}(X)$ and $\mathcal{C}(X)$ are dual cones ($\mathcal{C}(X)$ with weak* topology)
- No assumption needed on X.
- Short proof
- Questions?