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Continuous Valuations

Continuous Valuations

Definition

Continuous valuation ν = map ν : O(X )→ R+
such that:

ν(∅) = 0 (strictness)

U ⊆ V ⇒ ν(U) ≤ ν(V ) (monotonicity)

ν(U ∪ V ) + ν(U ∩ V ) = ν(U) + ν(V ) (modularity)

ν(
⋃↑

i∈I
Ui ) = sup↑i∈I ν(Ui ) (continuity)

Similar to measures, except give weights to opens.

Needed in semantics of programming languages
[JonesPlotkin89]

Under assumptions on X , cont. valuation=regular measure
[KeimelLawson05].
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Continuous Valuations

The Weak Topology

Let R+
σ = R+

with Scott topology (opens = (t,+∞]).

Definition

Let V(X ) = set of continuous valuations of X ,
with the weak topology,
coarsest making ν 7→

∫
x h(x)dν continuous, for every continuous h.

Subbasic opens:

[h > r ] = {ν ∈ V(X ) |
∫

x
h(x)dν > r}

As the usual weak topology, except test functions h are
continuous to R+

σ (=lsc).
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Representation Theorems

A Riesz Representation Theorem

Write C(Y ) = space of continuous maps [Y → R+
] (=lsc)

Y ∗ = subspace of linear continuous maps

Theorem (Kirch93, Tix95)

The following is a homeomorphism:

C(X )∗
G 7−→ λU∈O(X )·G(χU) // V(X )
λh∈C(X )·

∫
x h(x)dν ←−[ ν

oo

No condition on X at all

Easy proof
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Representation Theorems

The Schröder-Simpson Representation Theorem

Write C(Y ) = space of continuous maps [Y → R+
] (=lsc)

Y ∗ = subspace of linear continous maps

Theorem (SchröderSimpson05)

The following is an isomorphism of cones:

C(X )
h 7−→ λν∈V(X )·

∫
x∈X h(x)dν

// V(X )∗oo

No condition on X at all

Schröder and Simpson’s proof [Simpson09] was elaborate
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Representation Theorems

Topological Cones

Definition

A cone (C ,+, .) is as a vector space,
except scalar product r .c is with non-negative reals r .

Topological cone =
cone with +: C × C → C , . : R+

σ × C → C continuous.

Example: V(X ), weak topology

Non-example: C(X ), Scott topology (unless X core-compact)
. . . product not jointly continuous

Linear maps: ψ(
∑

i riνi ) =
∑

i riψ(νi ) for ri≥ 0
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Representation Theorems

The “obvious” way to a proof

C(X )
h 7−→ λν∈V(X )·

∫
x∈X h(x)dν

// V(X )∗
?

oo

Main task: given ψ : V(X )→ R+
linear continuous,

find h ∈ C(X ) such that ψ(ν) =
∫
x∈X h(x)dν for every ν

If h exists, then ψ(δx) =
∫
x h(x)dδx = h(x)

So only one possible choice: h(x) = ψ(δx)

Need to show ∫

x
ψ(δx)dν = ψ(ν) (1)

for every ν ∈ V(X ) . . . really hard.
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Representation Theorems

The “obvious” way to a proof (2)

Let’s try and show (1):

∫

x
ψ(δx)dν = ψ(ν)

Obvious if ν =
∑m

i=1 aiδxi (simple)

Easy for ν quasi-simple (directed sup of simple valuations), by
continuity

Problem: not all continuous valuations are quasi-simple.
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Representation Theorems

Previous proofs

[SchröderSimpson 05], [Simpson 09]:
elaborate series of deep results and finely bounding inequalities

[Keimel 12]: imitates classical proof of similar,
measure-theoretic theorem;
develops nice theory of quasi-uniform separation in
(quasi-uniform) cones.

Our proof: look at the weak open ψ−1(1,+∞]
. . . must be of the form

⋃
i∈I

⋂n
j=1[hij > rij ]

. . . we can take rij = 1;

. . . use Lemma 1 to eliminate unions

. . . use Lemma 2 to eliminate intersections

. . . so ψ−1(1,+∞] = [h > 1]: this is the right h.
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The proof

Proof, Lemma 1

A surprising observation (mostly due to [Keimel12])

Lemma 1 (Linear cont. ψ cannot tell between sup
∫

and
∫

sup)

Let hi ∈ C(X ), i ∈ I . TFAE:
(1) ψ(ν) ≥ supi

∫
x hi (x)dν for every ν

(2) ψ(ν) ≥
∫
x supi hi (x)dν for every ν

Note: supi not directed, supi
∫
x hi (x)dν 6=

∫
x supi hi (x)dν.

Proof (1/2). Only 1⇒ 2 is non-trivial.

Trick 1. Every hi directed sup of step functions
so can assume each hi step, =

∑
k aikχUik

Trick 2. supi∈I = sup↑J finite ⊆I supi∈J
by continuity of

∫
, can assume I finite.
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The proof

Proof, Lemma 1

A surprising observation (mostly due to [Keimel12])

Lemma 1 (Linear cont. ψ cannot tell between sup
∫

and
∫

sup)

Let hi ∈ C(X ), i ∈ I . TFAE:
(1) ψ(ν) ≥ supi

∫
x hi (x)dν for every ν

(2) ψ(ν) ≥
∫
x supi hi (x)dν for every ν

Proof (2/2). Assume hi =
∑

k aikχUik
, i ∈ I finite.

Let Cm be atoms of Boolean algebra of sets generated by Uik

On each Cm, hi constant = aim
so

∫
x

supi hi (x)dν|Cm
= maxi aimν(Cm)

= supi

∫
x
hi (x)dν|Cm

By 1, ψ(ν|Cm
) ≥

∫
x

supi hi (x)dν|Cm
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1

U11 U12 U21 C1 C2 C3 C4 C5

1

U11 U12 U21 C1 C2 C3 C4 C5

1

U11 U12 U21 C1 C2 C3 C4 C5

1

U11 U12 U21 C1 C2 C3 C4 C5

1

U11 U12 U21 C1 C2 C3 C4 C5

1

U11 U12 U21 C1 C2 C3 C4 C5
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mercredi 10 juillet 13

Since ψ additive and ν =
∑

m ν|Cm
, 2 follows.
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The proof

Proof, Lemma 1

A surprising observation (mostly due to [Keimel12])

Lemma 1 (Linear cont. ψ cannot tell between sup
∫

and
∫

sup)

Let hi ∈ C(X ), i ∈ I . TFAE:
(1) ψ(ν) ≥ supi

∫
x hi (x)dν for every ν

(2) ψ(ν) ≥
∫
x supi hi (x)dν for every ν

Lemma 1, Corollary

ψ−1(1,+∞] =
⋃

i∈I [hi > 1]⇒ ψ−1(1,+∞] = [h > 1] with h = supi hi .

Proof. ⊆ obvious. For ⊇:

[hi > 1] ⊆ ψ−1(1,+∞] implies ψ(ν) ≥
∫
x
hi (x)dν for all ν, i

So 1 holds, hence 2: ψ(ν) ≥
∫
x
h(x)dν.

If ν ∈ [h > 1], ψ(ν) ≥
∫
x
h(x)dν > 1, so ν ∈ ψ−1(1,+∞].
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The proof

Proof, Lemma 2

Lemma 2

If
⋂n

j=1[hj > 1] ⊆ ψ−1(1,+∞],

there is h ∈ C(X ) such that
⋂n

j=1[hj > 1]⊆ [h > 1] ⊆ ψ−1(1,+∞]

Proof.
Let F (ν) = (

∫
x
h1(x)dν, · · · ,

∫
x
hn(x)dν)

in R+n

Separate by Λ(~c) =
∑

j γjcj linear continuous
(e.g. [Keimel 2006])

Let h =
∑

j γjhj . Note∫
x
h(x)dν =

∑
j γj

∫
x
hj(x)dν = Λ(F (ν))

Inequalities follows.

U11 U12 U21 C1 C2 C3 C4 C5

⇤ = 1 ⇤  1 ⇤ > 1

1

U11 U12 U21 C1 C2 C3 C4 C5

⇤ = 1 ⇤  1 ⇤ > 1

1

U11 U12 U21 C1 C2 C3 C4 C5

⇤ = 1 ⇤  1 ⇤ > 1

1
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Proof, Lemma 2

Lemma 2

If
Tn

j=1[hj > 1] ✓  �1(1, +1],

there is h 2 ¬X such that
Tn

j=1[hj > 1] ✓ [h > 1] ✓  �1(1, +1]

Proof.
Let F (⌫) = (

R
x h1(x)d⌫, · · · ,

R
x hn(x)d⌫) in R+n

A = F (complement of  �1(1, +1])
convex non-empty

U = (1, +1]n open

By separation theorem (e.g. [Keimel 2006]),
find ⇤(~c) =

P
i �ici linear continuous

Let h =
P

i �ihi

U11 U12 U21 C1 C2 C3 C4 C5

� = 1 �  1 � > 1

1

U11 U12 U21 C1 C2 C3 C4 C5

� = 1 �  1 � > 1

1

U11 U12 U21 C1 C2 C3 C4 C5

� = 1 �  1 � > 1

1

U

A
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Representation Theorems

Proof, Lemma 2

Lemma 2

If
Tn

j=1[hj > 1] ✓  �1(1, +1],

there is h 2 ¬X such that
Tn

j=1[hj > 1] ✓ [h > 1] ✓  �1(1, +1]

Proof.
Let F (⌫) = (

R
x h1(x)d⌫, · · · ,

R
x hn(x)d⌫) in R+n

A = F (complement of  �1(1, +1])
convex non-empty

U = (1, +1]n open

By separation theorem (e.g. [Keimel 2006]),
find ⇤(~c) =

P
i �ici linear continuous

Let h =
P

i �ihi

U11 U12 U21 C1 C2 C3 C4 C5

� = 1 �  1 � > 1

1

U11 U12 U21 C1 C2 C3 C4 C5

� = 1 �  1 � > 1

1

U11 U12 U21 C1 C2 C3 C4 C5

� = 1 �  1 � > 1

1

U

A

mercredi 10 juillet 13

A Short Proof of the Schröder-Simpson Theorem
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The proof

End of proof

Let ψ ∈ V(X )∗, write ψ−1(1,+∞] as
⋃

i∈I
⋂ni

j=1[hij > 1].

Lemma 2 (recap)

There is hi ∈ C(X ) s.t.
⋂ni

j=1[hij > 1] ⊆ [hi > 1] ⊆ ψ−1(1,+∞]

So ψ−1(1,+∞] =
⋃

i∈I [hi > 1]

Lemma 1, Corollary

Then ψ−1(1,+∞] = [h > 1] with h = supi hi .

For all ν, t, ψ(ν) > t iff ν/t ∈ ψ−1(1,+∞]
iff ν/t ∈ [h > 1] iff

∫
x h(x)dν > t.

So ψ(ν) =
∫
x h(x)dν.
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The proof

Recap

Given ψ ∈ V(X )∗,
there is an h ∈ C(X ) such that ψ(ν) =

∫
x h(x)dν (1)

This h derived from the shape of weak opens
⋃

i∈I
⋂n

j=1[hij > rij ]
. . . and taking ν = δx in (1) implies h(x) = ψ(δx).
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The proof

Recap

We have proved:

Theorem (SchröderSimpson05)

The following is an isomorphism of cones:

C(X )
h 7−→ λν∈V(X )·

∫
x∈X h(x)dν

// V(X )∗
λx ·ψ(δx ) ←−[ ψ

oo

Notes:

V(X )∗ ∼= C(X ) (here) + V(X ) ∼= C(X )∗ (Riesz-Kirch-Tix)
⇒ V(X ) and C(X ) are dual cones (C(X ) with weak∗ topology)

No assumption needed on X .

Short proof

Questions?
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