A Short Proof of the Schröder-Simpson Theorem

Jean Goubault-Larrecq

Summer Topology Conference - July 23-26, 2013

Continuous Valuations

Definition

Continuous valuation $\nu=\operatorname{map} \nu: \mathcal{O}(X) \rightarrow \overline{\mathbb{R}}^{+}$such that:

$$
\begin{array}{rll}
\nu(\emptyset) & =0 \quad \text { (strictness) } & \\
U \subseteq V & \Rightarrow \nu(U) \leq \nu(V) & \text { (monotonicity) } \\
\nu(U \cup V)+\nu(U \cap V) & =\nu(U)+\nu(V) \quad \text { (modularity) } \\
\nu\left(\bigcup_{i \in I}^{\uparrow} U_{i}\right) & =\sup _{i \in I}^{\uparrow} \nu\left(U_{i}\right) & \text { (continuity) }
\end{array}
$$

■ Similar to measures, except give weights to opens.

- Needed in semantics of programming languages [JonesPlotkin89]
- Under assumptions on X, cont. valuation=regular measure [KeimelLawson05].

The Weak Topology

Let $\overline{\mathbb{R}}_{\sigma}^{+}=\overline{\mathbb{R}}^{+}$with Scott topology (opens $=(t,+\infty]$).

Definition

Let $\mathbf{V}(X)=$ set of continuous valuations of X, with the weak topology, coarsest making $\nu \mapsto \int_{x} h(x) d \nu$ continuous, for every continuous h. Subbasic opens:

$$
[h>r]=\left\{\nu \in \mathbf{V}(X) \mid \int_{X} h(x) d \nu>r\right\}
$$

■ As the usual weak topology, except test functions h are continuous to $\overline{\mathbb{R}}_{\sigma}^{+}$(=|sc).

A Riesz Representation Theorem

Write $\mathcal{C}(Y)=$ space of continuous maps $\left[Y \rightarrow \overline{\mathbb{R}}^{+}\right](=\mid \mathrm{sc})$

$$
Y^{*}=\text { subspace of linear continuous maps }
$$

Theorem (Kirch93, Tix95)

The following is a homeomorphism:
$\mathcal{C}(X)^{*} \underset{\lambda h \in \mathbb{C}(X) \cdot \int_{x} h(x) d \nu \longleftarrow \nu}{\underset{\rightleftarrows}{\leftrightarrows}} \mathbf{V}(X)$

- No condition on X at all
- Easy proof

The Schröder-Simpson Representation Theorem

Write $\quad \mathcal{C}(Y)=$ space of continuous maps $\left[Y \rightarrow \overline{\mathbb{R}}^{+}\right](=\mid \mathrm{sc})$ $Y^{*}=$ subspace of linear continous maps

Theorem (SchröderSimpson05)

The following is an isomorphism of cones:
$\mathcal{C}(X) \stackrel{h \longmapsto \lambda \nu \in \mathbf{V}(X) \cdot \int_{x \in X} h(x) d \nu}{\rightleftarrows} \mathbf{V}(X)^{*}$

- No condition on X at all
- Schröder and Simpson's proof [Simpson09] was elaborate

Topological Cones

Definition

A cone $(C,+,$.$) is as a vector space,$
except scalar product $r . c$ is with non-negative reals r.
Topological cone =
cone with $+: C \times C \rightarrow C, .: \mathbb{R}_{\sigma}^{+} \times C \rightarrow C$ continuous.

- Example: $\mathbf{V}(X)$, weak topology

■ Non-example: $\mathcal{C}(X)$, Scott topology (unless X core-compact) . . . product not jointly continuous
■ Linear maps: $\psi\left(\sum_{i} r_{i} \nu_{i}\right)=\sum_{i} r_{i} \psi\left(\nu_{i}\right)$ for $r_{i} \geq 0$

The "obvious" way to a proof

$$
\mathcal{C}(X) \stackrel{h \longmapsto \lambda \nu \in \mathbf{V}(X) \cdot \int_{x \in X} h(x) d \nu}{\rightleftarrows} \mathbf{V}(X)^{*}
$$

- Main task: given $\psi: \mathbf{V}(X) \rightarrow \overline{\mathbb{R}}^{+}$linear continuous, find $h \in \mathcal{C}(X)$ such that $\psi(\nu)=\int_{x \in X} h(x) d \nu$ for every ν
- If h exists, then $\psi\left(\delta_{x}\right)=\int_{x} h(x) d \delta_{x}=h(x)$

The "obvious" way to a proof

$\mathcal{C}(X) \stackrel{h \longmapsto \lambda \nu \in \mathbf{V}(X) \cdot \int_{x \in X} h(x) d \nu}{\rightleftarrows} \mathbf{V}(X)^{*}$

- Main task: given $\psi: \mathbf{V}(X) \rightarrow \overline{\mathbb{R}}^{+}$linear continuous, find $h \in \mathcal{C}(X)$ such that $\psi(\nu)=\int_{x \in X} h(x) d \nu$ for every ν
■ If h exists, then $\psi\left(\delta_{x}\right)=\int_{x} h(x) d \delta_{x}=h(x)$
■ So only one possible choice: $h(x)=\psi\left(\delta_{x}\right)$
- Need to show

$$
\begin{equation*}
\int_{x} \psi\left(\delta_{x}\right) d \nu=\psi(\nu) \tag{1}
\end{equation*}
$$

for every $\nu \in \mathbf{V}(X)$
... really hard.

The "obvious" way to a proof (2)

Let's try and show (1):

$$
\int_{x} \psi\left(\delta_{x}\right) d \nu=\psi(\nu)
$$

■ Obvious if $\nu=\sum_{i=1}^{m} a_{i} \delta_{x_{i}}$ (simple)

- Easy for ν quasi-simple (directed sup of simple valuations), by continuity
■ Problem: not all continuous valuations are quasi-simple.

Previous proofs

■ [SchröderSimpson 05], [Simpson 09]: elaborate series of deep results and finely bounding inequalities

- [Keimel 12]: imitates classical proof of similar, measure-theoretic theorem; develops nice theory of quasi-uniform separation in (quasi-uniform) cones.

Previous proofs

■ [SchröderSimpson 05], [Simpson 09]: elaborate series of deep results and finely bounding inequalities

- [Keimel 12]: imitates classical proof of similar, measure-theoretic theorem; develops nice theory of quasi-uniform separation in (quasi-uniform) cones.
■ Our proof: look at the weak open $\psi^{-1}(1,+\infty$]
\ldots. must be of the form $\bigcup_{i \in I} \bigcap_{j=1}^{n}\left[h_{i j}>r_{i j}\right]$
\ldots we can take $r_{i j}=1$;
... use Lemma 1 to eliminate unions
... use Lemma 2 to eliminate intersections
\ldots so $\psi^{-1}(1,+\infty]=[h>1]$: this is the right h.

Proof, Lemma 1

A surprising observation (mostly due to [Keimel12])
Lemma 1 (Linear cont. ψ cannot tell between sup \int and \int sup)
Let $h_{i} \in \mathcal{C}(X), i \in I$. TFAE:
(1) $\quad \psi(\nu) \geq \sup _{i} \int_{X} h_{i}(x) d \nu$ for every ν
(2) $\psi(\nu) \geq \int_{x} \sup _{i} h_{i}(x) d \nu$ for every ν

Note: $\sup _{i}$ not directed, $\sup _{i} \int_{x} h_{i}(x) d \nu \neq \int_{x} \sup _{i} h_{i}(x) d \nu$.
Proof (1/2). Only $1 \Rightarrow 2$ is non-trivial.

- Trick 1. Every h_{i} directed sup of step functions
so can assume each h_{i} step, $=\sum_{k} a_{i k} \chi U_{i k}$
- Trick 2. $\sup _{i \in I}=\sup _{J}^{\uparrow}$ finite $\subseteq I \sup _{i \in J}$ by continuity of \int, can assume I finite.

Proof, Lemma 1

A surprising observation (mostly due to [Keimel12])
Lemma 1 (Linear cont. ψ cannot tell between sup \int and \int sup)
Let $h_{i} \in \mathcal{C}(X), i \in I$. TFAE:
(1) $\psi(\nu) \geq \sup _{i} \int_{x} h_{i}(x) d \nu$ for every ν
(2) $\psi(\nu) \geq \int_{x} \sup _{i} h_{i}(x) d \nu$ for every ν

Proof (2/2). Assume $h_{i}=\sum_{k} a_{i k} \chi U_{i k}, i \in I$ finite.

- Let C_{m} be atoms of Boolean algebra of sets generated by $U_{i k}$

■ On each C_{m}, h_{i} constant $=a_{i m}$

$$
\text { so } \begin{aligned}
\int_{x} \sup _{i} h_{i}(x) d \nu_{\mid C_{m}} & =\max _{i} \operatorname{aim}_{i m} \nu\left(C_{m}\right) \\
& =\sup _{i} \int_{x} h_{i}(x) d \nu_{\mid C_{m}}
\end{aligned}
$$

- By $1, \psi\left(\nu_{\mid C_{m}}\right) \geq \int_{x} \sup _{i} h_{i}(x) d \nu_{\mid C_{m}}$

■ Since ψ additive and $\nu=\sum_{m} \nu_{\mid C_{m}}, 2$ follows.

Proof, Lemma 1

A surprising observation (mostly due to [Keimel12])
Lemma 1 (Linear cont. ψ cannot tell between sup \int and \int sup)
Let $h_{i} \in \mathcal{C}(X), i \in I$. TFAE:
(1) $\psi(\nu) \geq \sup _{i} \int_{x} h_{i}(x) d \nu$ for every ν
(2) $\psi(\nu) \geq \int_{x} \sup _{i} h_{i}(x) d \nu$ for every ν

Lemma 1, Corollary

$\psi^{-1}(1,+\infty]=\bigcup_{i \in I}\left[h_{i}>1\right] \Rightarrow \psi^{-1}(1,+\infty]=[h>1]$ with $h=\sup _{i} h_{i}$.
Proof. \subseteq obvious. For \supseteq :
■ $\left[h_{i}>1\right] \subseteq \psi^{-1}(1,+\infty]$ implies $\psi(\nu) \geq \int_{x} h_{i}(x) d \nu$ for all ν, i

- So 1 holds, hence 2: $\psi(\nu) \geq \int_{x} h(x) d \nu$.
- If $\nu \in[h>1], \psi(\nu) \geq \int_{x} h(x) d \nu>1$, so $\nu \in \psi^{-1}(1,+\infty]$.

Proof, Lemma 2

Lemma 2

If $\bigcap_{j=1}^{n}\left[h_{j}>1\right] \subseteq \psi^{-1}(1,+\infty]$, there is $h \in \mathcal{C}(X)$ such that $\bigcap_{j=1}^{n}\left[h_{j}>1\right] \subseteq[h>1] \subseteq \psi^{-1}(1,+\infty]$

Proof.

- Let $F(\nu)=\left(\int_{x} h_{1}(x) d \nu, \cdots, \int_{x} h_{n}(x) d \nu\right)$ in $\overline{\mathbb{R}}^{+n}$
- Separate by $\Lambda(\vec{c})=\sum_{j} \gamma_{j} c_{j}$ linear continuous (e.g. [Keimel 2006])
- Let $h=\sum_{j} \gamma_{j} h_{j}$. Note
$\int_{x} h(x) d \nu=\sum_{j} \gamma_{j} \int_{x} h_{j}(x) d \nu=\Lambda(F(\nu))$
 Inequalities follows.

End of proof

$$
\text { Let } \psi \in \mathbf{V}(X)^{*}, \quad \text { write } \psi^{-1}(1,+\infty] \text { as } \bigcup_{i \in I} \bigcap_{j=1}^{n_{i}}\left[h_{i j}>1\right] .
$$

Lemma 2 (recap)

There is $h_{i} \in \mathcal{C}(X)$ s.t. $\bigcap_{j=1}^{n_{i}}\left[h_{i j}>1\right] \subseteq\left[h_{i}>1\right] \subseteq \psi^{-1}(1,+\infty]$

$$
\text { So } \psi^{-1}(1,+\infty]=\bigcup_{i \in I}\left[h_{i}>1\right]
$$

End of proof

$$
\text { Let } \psi \in \mathbf{V}(X)^{*}, \quad \text { write } \psi^{-1}(1,+\infty] \text { as } \bigcup_{i \in I} \bigcap_{j=1}^{n_{i}}\left[h_{i j}>1\right] .
$$

Lemma 2 (recap)
There is $h_{i} \in \mathcal{C}(X)$ s.t. $\bigcap_{j=1}^{n_{i}}\left[h_{i j}>1\right] \subseteq\left[h_{i}>1\right] \subseteq \psi^{-1}(1,+\infty]$

$$
\text { So } \psi^{-1}(1,+\infty]=\bigcup_{i \in I}\left[h_{i}>1\right]
$$

Lemma 1, Corollary

Then $\psi^{-1}(1,+\infty]=[h>1]$ with $h=\sup _{i} h_{i}$.
For all $\nu, t, \psi(\nu)>t \quad$ iff $\nu / t \in \psi^{-1}(1,+\infty]$ iff $\nu / t \in[h>1] \quad$ iff $\int_{x} h(x) d \nu>t$.
So $\psi(\nu)=\int_{x} h(x) d \nu$.

Recap

Given $\psi \in \mathbf{V}(X)^{*}$, there is an $h \in \mathcal{C}(X)$ such that $\psi(\nu)=\int_{X} h(x) d \nu$

This h derived from the shape of weak opens $\bigcup_{i \in I} \bigcap_{j=1}^{n}\left[h_{i j}>r_{i j}\right]$
\ldots and taking $\nu=\delta_{x}$ in (1) implies $h(x)=\psi\left(\delta_{x}\right)$.

Recap

We have proved:

Theorem (SchröderSimpson05)

The following is an isomorphism of cones:

$$
\mathcal{C}(X) \stackrel{h \longmapsto \lambda \nu \in \mathbf{V}(X) \cdot \int_{x \in X} h(x) d \nu}{\underset{\lambda x \cdot \psi\left(\delta_{x}\right) \longleftarrow \psi}{\rightleftarrows}} \mathbf{V}(X)^{*}
$$

Notes:

■ $\mathbf{V}(X)^{*} \cong \mathcal{C}(X)$ (here) $+\mathbf{V}(X) \cong \mathcal{C}(X)^{*}$ (Riesz-Kirch-Tix) $\Rightarrow \mathbf{V}(X)$ and $\mathcal{C}(X)$ are dual cones ($(\mathcal{C}(X)$ with weak* topology)

- No assumption needed on X.
- Short proof

■ Questions?

