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Metric Spaces

Center

Radius

Definition (Metric)

x = y ⇔ d(x , y) = 0

d(x , y) = d(y , x)

d(x , y) ≤ d(x , z) + d(z , y)
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Introduction

Quasi-

Hemi-Metric Spaces

Center

Radius

Definition (Hemi-Metric)

x = y ⇒ d(x , y) = 0

d(x , y) = d(y , x)

d(x , y) ≤ d(x , z) + d(z , y)
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Introduction

Goals of this Talk

1 Quasi-, Hemi-Metrics a Natural Extension of Metrics

2 Most Classical Theorems Adapt
. . . proved very recently.

3 Formal Balls!
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Quasi-Metrics are Natural [Lawvere73]
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Quasi-Metric Spaces

The Basic Theory

The Open Ball Topology

As in the symmetric case, define:

U

Definition (Open Ball Topology)

An open U is a union of open
balls.

. . . but open balls are stranger.

Note: there are more relevant topolo-
gies, see later.
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Quasi-Metric Spaces

The Basic Theory

The Specialization Quasi-Ordering

Definition (≤)

Let x ≤ y iff (equivalently):

every open containing x also contains y

d(x , y) = 0.

This would be trivial in the symmetric case.

Example: dR(x , y) = max(x − y , 0) on R.
Then ≤ is the usual ordering.



Quasi-Metric Spaces

The Basic Theory

Excuse Me for Turning Everything Upside-Down. . .

. . . but I’m a computer scientist. To me, trees look like this:

B      A
B      A

faux vrai

faux vrai faux vrai

faux faux faux fauxvrai vrai vrai vrai

C :

B :

A :

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

A C      B A A
A, B, C

with the root on top, and the leaves at the bottom.
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The Basic Theory

Excuse Me for Turning Everything Upside-Down. . .

. . . but you should really look at hills this way:

y

x

d(x , y) = 0
(indeed x ≤ y)
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The Basic Theory

Symmetrization

Definition (d sym)

If d is a quasi-metric, then

d sym(x , y) = max(d(x , y), d(y , x)︸ ︷︷ ︸
dop(x ,y)

)

is a metric.

Example: dsym
R (x , y) = |x − y | on R.

Motto: A quasi-metric d describes

a metric d sym

a partial ordering ≤ (x ≤ y ⇔ d(x , y) = 0)

and possibly more.
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The Basic Theory

Pearl 1: Wilson’s Theorem

Remember the following classic?

Theorem (Urysohn-Tychonoff, Early 20th Century)

For countably-based spaces, metrizability ⇔ regular Hausdorff.

Proof: hard.

We have the much simpler:

Theorem (Wilson31)

For countably-based spaces, hemi-metrizability ⇔ True.

Proof: let (Un)n∈N be countable base.
Define dn(x , y) = 1 iff x ∈ Un and y 6∈ Un; 0 otherwise.
Together (dn)n∈N define the original topology.
Then let d(x , y) = supn∈N

1
2n dn(x , y).
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Quasi-Metric Spaces

Completeness

Completeness

Completeness is an important property of metric spaces.

Many generalizations available:

Čech-completeness
Choquet-completeness
Dieudonné-completeness
Rudin-completeness
Smyth-completeness
Yoneda-completeness
. . .

I was looking for a unifying notion.

I failed, but Smyth [Smyth88] and Yoneda [BvBR98] are the
two most important for quasi-metric spaces.



Quasi-Metric Spaces

Completeness

A Shameless Ad

Most of this in Chapter 5 of:

. . . a book on topology (mostly non-Hausdorff)
with a view to domain theory (but not only).



Quasi-Metric Spaces

Completeness

Completeness in the Symmetric Case

Definition

A metric space is complete ⇔ every Cauchy net has a limit.

n302520151050

xn

ε Definition (Cauchy)

∀ε > 0,
for i ≤ j large enough,

d(xi , xj) < ε

i.e.,
lim supi≤j d(xi , xj) = 0



Quasi-Metric Spaces

Completeness

Basic Results in the Symmetric Case

The following are complete/preserve completeness:

Rsym (i.e., with dsymR (x , y) = |x − y |)
every compact metric space

closed subspaces

arbitrary coproducts

countable topological products

categorical products (sup metric)

function spaces (all maps/u.cont./c-Lipschitz maps)



Quasi-Metric Spaces

Completeness

Complete Quasi-Metric Spaces

For quasi-metric spaces, two proposals:

Definition (Smyth-c. [Smyth88])

Every Cauchy net has a dop-limit

complete metric spaces

R, R ∪ {+∞}, [a, b]
. . . with

symcompact spaces
i.e., X sym compact

finite products

all coproducts

function spaces

Definition (Yoneda-c. [BvBR98])

Every Cauchy net has a d-limit

complete metric spaces

R, R ∪ {+∞}, [a, b]
dR(x , y) = max(x − y , 0)

Smyth-complete spaces
e.g., symcompact spaces

categ./countable products

all coproducts

function spaces (all/c-Lip.)



Quasi-Metric Spaces

Completeness

d-Limits

Used in the less demanding Yoneda-completeness:

Definition (Imitated from definition of directed sup)

Let (xn)n∈N be a Cauchy net
x is a d-limit ⇔ ∀y , d(x , y) = lim supn d(xn, y).

Example: if d metric, d-limit=ordinary limit.

Example: given ordering ≤, d≤(x , y) =

{
0 if x ≤ y
1 else

:

Cauchy=eventually monotone, d-limit=sup.
In this case, Yoneda-complete=dcpo.

Warning: in general, d-limits are not limits (wrt. open ball
topol.—need generalization of Scott topology [BvBR98]).
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Completeness

dop-Limits

Used for the stronger notion of Smyth-completeness.
Easier to understand topologically:

Fact

Let (xn)n∈N be a Cauchy net in X .
Its dop-limit (if any) is its ordinary limit in X sym (if any).

Is there an alternate/more elegant characterizations of these
notions of completeness? What do they mean?
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Quasi-Metric Spaces

Formal Balls

Formal Balls

Introduced by [WeihrauchSchneider81]

Characterize completeness through domain theory
[EdalatHeckmann98]

. . . for metric spaces

A natural idea:

Start all over again,
look for new relevant definitions of completeness

. . . this time for quasi-metric spaces,
based on formal balls.
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Formal Balls

Formal Balls

Definition

A formal ball is a pair (x , r), x ∈ X , r ∈ R+.

The poset B(X ) of formal balls is
ordered by

(x , r) v (y , s)⇔ d(x , y) ≤ r − s

(Not reverse inclusion of
corresponding closed balls)

(y , s)

(x , r)

y x
X



Quasi-Metric Spaces

Formal Balls

A Theorem by Edalat and Heckmann

Theorem (EdalatHeckmann98)

Let X be metric. X complete ⇔ B(X ) dcpo.

(x4, r4)

x4

x2

x3
x1

B(X )

X

(x0, r0)

x0

(x1, r1)

(x2, r2)

(x3, r3)



Quasi-Metric Spaces

Formal Balls

Pearl 2: the Kostanek-Waszkiewicz Theorem

Let us generalize to quasi-metric spaces.
How about defining completeness as follows?

Definition (Proposal)

Let X be quasi-metric. X complete ⇔ B(X ) dcpo.

Why not, but. . .

this is a theorem:

Theorem (Kostanek-Waszkiewicz10)

Let X be quasi-metric. X Yoneda-complete ⇔ B(X ) dcpo.

Moreover, given chain of formal balls (xn, rn)n∈N, with sup (x , r):

r = infn∈N rn,

(xn)n∈N is Cauchy,

x is the d-limit of (xn)n∈N.
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Formal Balls

Cauchy-weightable Nets

If (xn, rn)n directed family of formal balls and infn rn = 0
then (xn)n is Cauchy-weightable:

d(xm, xn) ≤ rm − rn if m ≤ n

Lemma

Every Cauchy-weightable net is (forward) Cauchy: for every ε > 0,

d(xm, xn) < ε for m ≤ n large enough

Conversely, not all Cauchy nets are Cauchy-weightable
. . . Cauchy-weightability implies

∑+∞
n=m d(xn, xn+1) < +∞

now take xn = (−1)n/(n + 1) in R, usual metric.
However. . .
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Formal Balls

Cauchy ∼ Cauchy-weightable

Lemma

TFAE:

1 Every Cauchy net has a d-limit (Yoneda-completeness)

2 Every Cauchy-weightable net has a d-limit

Proof. Every Cauchy net (xn)n has a Cauchy-weightable subnet
(xα(E))E finite subset of ns, ⊆:

α(E ) such that d(xm, xn) < 1/2|E |+1 for all m ≤ n above α(E )
+ α(E ) ≥ n for every n ∈ E + α(E ) ≥ α(E ′) for every E ′ ( E

Let rα(E) = 1/2|E | — so infE rα(E) = 0

if E ⊆ E ′ then d(xα(E), xα(E ′)) ≤ 1/2|E |+1 ≤ rα(E) − rα(E ′)

(distinguish cases E = E ′ and |E ′| ≥ |E |+ 1)

By 2, (xα(E))E has a d-limit x .

This must also be a d-limit of (xn)n, since Cauchy.
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Formal Balls

The Kostanek Waszkiewicz Theorem

Theorem (Kostanek-Waszkiewicz10)

Let X be quasi-metric. X Yoneda-complete ⇔ B(X ) dcpo.

Proof (⇒). Let (xn, rn)n directed family of formal balls.
Let r = infn rn: (xn, rn − r)n directed and infn rn − r = 0

so (xn)n Cauchy-weighted.
Let x = d-limit of (xn)n.

Now check that (x , r) = supn(xn, rn) (exercise).
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Formal Balls

The Kostanek Waszkiewicz Theorem

Theorem (Kostanek-Waszkiewicz10)

Let X be quasi-metric. X Yoneda-complete ⇔ B(X ) dcpo.

Proof (⇐). Let (xn)n Cauchy-weighted by rn.
(xn, rn) is directed family of formal balls, hence has sup (x , r).
Since (xn, rn) ≤ (x , r), rn ≥ r . So r = 0 (= infn rn).
Check that x = d-limit of (xn)n, i.e., d(x , y) = lim supn d(xn, y):

Note that lim supn d(xn, y) = sup↑ d(xn, y)− rn.

For every y , d(xn, y) ≤ d(xn, x) + d(x , y) ≤ (rn − r) + d(x , y).
So sup↑ d(xn, y)− rn ≤ d(x , y)− r = d(x , y).

If inequality were strict, let s = sup↑ d(xn, y)− rn < d(x , y)
Since d(xn, y) ≤ rn + s, (xn, rn + s) ≤ (y , 0)
Take sups: (x , r + s) ≤ (y , 0), so d(x , y) ≤ r + s = s,

contradiction.
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Formal Balls

The Continuous Poset of Formal Balls

Let us return to metric spaces for a moment.

Theorem (EdalatHeckmann98)

Let X be metric. X complete ⇔ B(X ) dcpo.

Moreover,

B(X ) is then a continuous dcpo

and (x , r)� (y , s)⇔ d(x , y) < r − s (not ≤)

A typical notion from domain theory:

way-below: B � B ′ iff for every chain (Bi )i∈I such that
B ′ ≤ supi Bi , then B ≤ Bi for some i .

continuous dcpo = every B is directed sup of all Bi � B.

Example: R+
(r � s iff r = 0 or r < s)
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Formal Balls

Pearl 3: the Romaguera-Valero Theorem

Define ≺ by: (x , r) ≺ (y , s)⇔ d(x , y) < r − s
How about defining completeness as follows? (X quasi-metric)

Definition (Proposal)

X complete ⇔ B(X ) continuous dcpo with way-below ≺.

Why not, but. . .

this is a theorem:

Theorem (Romaguera-Valero10)

X Smyth-complete ⇔ B(X ) continuous dcpo with way-below ≺.

Moreover, given chain of formal balls (xn, rn)n∈N, with sup (x , r):

r = infn∈N rn,

(xn)n∈N is Cauchy,

x is the dop-limit of (xn)n∈N, i.e., its limit in X sym.



Quasi-Metric Spaces

Formal Balls

Pearl 3: the Romaguera-Valero Theorem

Define ≺ by: (x , r) ≺ (y , s)⇔ d(x , y) < r − s
How about defining completeness as follows? (X quasi-metric)

Definition (Proposal)

X complete ⇔ B(X ) continuous dcpo with way-below ≺.

Why not, but. . . this is a theorem:

Theorem (Romaguera-Valero10)

X Smyth-complete ⇔ B(X ) continuous dcpo with way-below ≺.

Moreover, given chain of formal balls (xn, rn)n∈N, with sup (x , r):

r = infn∈N rn,

(xn)n∈N is Cauchy,

x is the dop-limit of (xn)n∈N, i.e., its limit in X sym.



Quasi-Metric Spaces

Formal Balls

The Gamut of Completeness Properties So Far

Stronger
with �=≺
a continuous dcpo

a dcpo

Spaces of formal balls is:

Yoneda-complete

Smyth-complete

Weaker
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Quasi-Metric Spaces

Detour: Fixed Point Theorems

Reminder: Banach’s Fixed Point Theorem

Theorem (Banach)

Let X , d complete metric with ∀x , y , d(x , y) < +∞.
Every c-Lipschitz map f : X → X with c < 1 has a unique fixed
point.

Proof. Sequence of iterates f n(x0) is Cauchy,
for any starting point x0.

In quasi-metrics, need to correct the following:

c-Lipschitz does not imply preservation of d-limits



Quasi-Metric Spaces

Detour: Fixed Point Theorems

Yoneda-Continuity

Definition (Rutten96 — imitated from Scott-continuity)

Let X ,Y Yoneda-complete.
f : X → Y is Yoneda-continuous
iff uniformly continuous + preserves d-limits of Cauchy nets

Uniformly continuous ∼ monotonic

Cauchy net ∼ directed family

d-limit of Cauchy net ∼ directed sup



Quasi-Metric Spaces

Detour: Fixed Point Theorems

Formal Balls to the Rescue (again)

Lemma

Let X , Y Yoneda-complete, f : X → Y c-Lipschitz.
Define Bc(f ) : (x , r) 7→ (f (x), cr).

f Yoneda-continuous iff Bc(f ) Scott-continuous.

Proof. By Kostanek-Waszkiewicz,

d-limits of Cauchy-weightable nets
≡

directed sups of formal balls



Quasi-Metric Spaces

Detour: Fixed Point Theorems

The Banach-Rutten Fixed Point Theorem

Theorem (Rutten 96)

Let X , d Yoneda-complete with ∀x , y , d(x , y) < +∞.
Every c-Lipschitz Yoneda-continuous map f : X → X with c < 1
has a unique fixed point.

Proof. Iterates of formal balls Bc(f )n(x0, r0) form a chain.
. . . need c-Lipschitz to ensure (x0, r0) ≤ Bc(f )(x0, r0)

for some r0 large enough (≥ d(x0, f (x0))/(1− c))

By Kostanek-Waszkiewicz, has a sup (x , r)
and Bc(f )(x , r) = (x , r) (Scott-continuity)

So f (x) = x .
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Detour: Fixed Point Theorems

The Kleene-Rutten Fixed Point Theorem

Variant, not requiring c-Lipschitzness.

Theorem (Rutten 96)

Let X , d Yoneda-complete with ∀x , y , d(x , y) < +∞.
Every Yoneda-continuous map f : X → X such that x0 ≤ f (x0) has
a least fixed point above x0

Proof. Iterates of formal balls Bc(f )n(x0, r0) form a chain

By Kostanek-Waszkiewicz, has a sup (x , r)
and Bc(f )(x , r) = (x , r) (Scott-continuity)

So f (x) = x .
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Detour: Fixed Point Theorems

The Bourbaki-Witt Theorem

Note the pattern:

Existence of a poset-theoretic fixed point on formal balls implies
existence of a fixed point in X

Let’s use the following:

Theorem (Bourbaki-Witt)

Let Φ be an inductive poset (a dcpo).
Every inflationary map g : Φ→ Φ has a fixed point above any
given a ∈ Φ.

Note. Inflationary = x ≤ g(x) for every x .
Monotonicity not required.



Quasi-Metric Spaces

Detour: Fixed Point Theorems

Pearl 4: the Caristi-Waszkiewicz Theorem

A potential map ϕ : X → R+ = (. . .∼ lower semi-continuity)
for every Cauchy net (xn)n with d-limit x , ϕ(x) ≤ lim infn ϕ(xn)

Theorem (Waszkiewicz 10, generalizing Caristi)

Let X be Yoneda-complete, f an arbitrary map : X → X ,
ϕ a potential map such that ϕ(f (x)) + d(x , f (x)) ≤ ϕ(x).
Then f has a fixed point.

Proof. By Kostanek-Waszkiewicz, B(X ) dcpo.
Since ϕ potential, Φ = {formal balls (x , r) with r ≥ ϕ(x)} closed

under directed sups, hence dcpo.
Let f ′(x , r) = (f (x), r − ϕ(x) + ϕ(f (x))).

Inequality assures well-defined, f ′ : Φ→ Φ, and inflationary.

By Bourbaki-Witt, f ′(x , r) = (x , r) for some (x , r).
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The d-Scott Topology

Alexandroff vs. Scott

Is the open ball topology the right one?

No

Let X ,≤ poset

Define canonical quasi-metric: d(x , y) = 0 iff x ≤ y , +∞ else

Then open ball = Alexandroff (open=upward closed)

The “right” topology is Scott: open=upward closed whose
complement is closed under directed sups
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The d-Scott Topology

The d-Scott Topology

Definition (d-Scott Topology)

= subspace topology
from the inclusion into B(X ) with its Scott topology.

X

B(X ), Scott topology

(y , s)

(x , r)

y x

Same idea as from Lawson’s computational models

Related but not identical with [Bonsangue, van Breugel,
Rutten 98]’s generalized Scott topology on X , d

(identical on algebraic Yoneda-complete spaces)
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The d-Scott Topology

Properties of the d-Scott Topology

d-Scott coarser than open ball (∼ Scott vs. Alexandroff)

d-Scott = open ball if (1) d metric or (2) d Smyth-complete

Proposition

If X ,Y Yoneda-complete and f Lipschitz, then
f Yoneda-continuous iff continuous wrt. d-Scott topologies.

Proof. c-Lipschitz f extends to

Bc(f ) : (x , r) 7→ (f (x), cr) on formal balls

. . . Scott-continuous iff f Y-continuous.
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The d-Scott Topology

d-Finiteness

Definition (Imitated from domain theory)

x is d-finite iff d(x , ) Yoneda-continuous from X to R+op

iff d(x , y) = lim infn d(x , yn)
for every Cauchy (yn)n with d-limit y

d-algebraic = every point is d-limit of d-finite points.

Every point is d-finite if (1) d metric or (2) d Smyth-complete

In R ∪ {+∞}, d-finite points=all except +∞
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The d-Scott Topology

Pearl 5: the Ali-Akbari Honari Pourmahdian Rezaii
Theorem

Theorem

The d-Scott topology of a d-algebraic Yoneda-complete space
has a basis of open balls with d-finite centers

. . . no wonder open ball=d-Scott
if (1) d-metric or (2) d Smyth-complete
since these are cases where every element is d-finite

Theorem (Ali-Akbari, Honari, Pourmahdian, Rezaii 10)

A Yoneda-complete space is Smyth-complete
iff all its points are d-finite.

. . . hence R ∪ {+∞} d-algebraic Y-complete, not S-complete.
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The d-Scott Topology

The Gamut of Notions of Completeness

with �=≺Stronger

Weaker

Smyth-complete

Yoneda-complete

d-continuous Yoneda-complete

d-algebraic Yoneda-complete

Spaces of formal balls is:

a dcpo

a continuous dcpo

a continuous dcpo with basis
(x , r), x d-finite

a continuous dcpo
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The d-Scott Topology

The Gamut of Notions of Completeness

R ∪ {+∞} (asym.)

R`, d`

[0, 1] (asym.)

with �=≺
a continuous dcpo

(x , r), x d-finite
a continuous dcpo with basis

a continuous dcpo

a dcpo

Spaces of formal balls is:

d-algebraic Yoneda-complete

d-continuous Yoneda-complete

Yoneda-complete

Smyth-complete

Weaker

Stronger
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The d-Scott Topology

The Sorgenfrey Line

A famous counterexample in topology (a normal space whose
square is not normal).

Definition

R` = reals with d`(r , s) =

{
r − s if r ≥ s
1 else

(“convergence from the right”)

A T2, non metrizable space (since not second-countable)

but continuous Yoneda-complete:
(x , r)� (y , s) iff x > y and x − y < r − s
(recall (x , r) ≺ (y , s) iff d`(x , y) < r − s)

Not Smyth-complete

Not even d-algebraic Yoneda-complete: no d-finite element
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The Quasi-Metric Space of Formal Balls

The Quasi-Metric Space of Formal Balls

Instead of considering B(X ) as a poset, let us make it a
quasi-metric space itself.

Definition (Rutten96)

Let d+((x , r), (y , s)) = max(d(x , y)− r + s, 0)

(x , r)

x
X

y

General case:

d+((x , r), (y , s))

(y , s)
(y , s)

(x , r)

y x
X

Case (x , r) v (y , s):
(d+((x , r), (y , s)) = 0)

Note: v is merely the specialization quasi-ordering of d+.
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The Quasi-Metric Space of Formal Balls

The C-Space of Formal Balls

Theorem

B(X ) (open ball topology)
is a c-space, i.e., for all b ∈ U
open in B(X ), b ∈ int(↑ b′)
for some b′ ∈ U

int(↑ b′)
b = (y , s)

b′ = (x , r)

y x
X

U

Key: closed ball around (y , s), radius
ε/2, is ↑(y , s + ε/2)

b

U

int(Q)

Q (compact saturated)
(open)

∼ locally compact, where the
interpolating compact is ↑ b′

[Ershov73, Erné91]
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The Quasi-Metric Space of Formal Balls

The Abstract Basis of Formal Balls

Definition (Reminder)

Let (x , r) ≺ (y , s) in B(X )
⇔ d(x , y) < r − s
⇔ (y , s) ∈ int(↑(x , r))

(y , s)

(x , r)

y x
X

int(↑ (x , r))

Fact (Keimel)

c-space = abstract basis

Theorem

B(X ),≺ is an abstract basis, i.e.:

(transitivity) if a ≺ b ≺ c then a ≺ c

(interpolation) if (ai )
n
i=1 ≺ c then (ai )

n
i=1 ≺ b ≺ c for some b
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The Quasi-Metric Space of Formal Balls

C-Spaces and the Romaguera-Valero Thm (Pearl 6)

So B(X ) is a c-space = an abstract basis
Note: sober c-space = continuous dcpo with way-below ≺

Theorem (Romaguera-Valero10)

Theorem (JGL)

X Smyth-complete ⇔ B(X ) sober in its open ball topology.



Quasi-Metric Spaces

The Quasi-Metric Space of Formal Balls

C-Spaces and the Romaguera-Valero Thm (Pearl 6)

So B(X ) is a c-space = an abstract basis
Note: sober c-space = continuous dcpo with way-below ≺

Theorem (Romaguera-Valero10)

X Smyth-complete ⇔ B(X ) continuous dcpo with way-below ≺.
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The Quasi-Metric Space of Formal Balls

C-Spaces and the Romaguera-Valero Thm (Pearl 6)

So B(X ) is a c-space = an abstract basis
Note: sober c-space = continuous dcpo with way-below ≺

Theorem (Romaguera-Valero10)

X Smyth-complete ⇔ B(X ) continuous dcpo with way-below ≺.

Theorem (JGL)

X Smyth-complete ⇔ B(X ) sober in its open ball topology.
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The Quasi-Metric Space of Formal Balls

Pearl 2 – Pearl 6 Crossover

In the same vein. . .
A monotone convergence space is one:

that is a dcpo in its specialization order ≤
whose topology is coarser that Scott

Every sober space is monotone convergence.

Theorem (Kostanek-Waszkiewicz10)

X Yoneda-complete ⇔ B(X ) dcpo.

Theorem (JGL)

X Yoneda-complete ⇔ B(X ) monotone convergence.
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Pearl 2 – Pearl 6 Crossover

In the same vein. . .
A monotone convergence space is one:

that is a dcpo in its specialization order ≤
whose topology is coarser that Scott

Every sober space is monotone convergence.

Theorem (Kostanek-Waszkiewicz10)
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Notions of Completion

Notions of Completion

Can we embed any quasi-metric space in a
Yoneda/Smyth-complete one?

Yes: Smyth-completion [Smyth88]

Yes: Yoneda-completion [BvBR98]

Let us explore another way:

X
formal balls //

completion?

��

B(X )

(domain-theoretic)

rounded ideal

completion
��

S(X )
formal balls

// B(S(X )) ∼= RI(B(X ))
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Can we embed any quasi-metric space in a
Yoneda/Smyth-complete one?

Yes: Smyth-completion [Smyth88]

Yes: Yoneda-completion [BvBR98]

Let us explore another way:
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formal balls //
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��

B(X )

(domain-theoretic)

rounded ideal

completion
��

S(X )
formal balls

// B(S(X )) ∼= RI(B(X ))



Quasi-Metric Spaces

Notions of Completion

The Theory of Abstract Bases

A rounded ideal D in B,≺ is a non-empty subset of B s.t.:

(down closed) if a ≺ b ∈ D then a ∈ D

(directed) if (ai )
n
i=1 ∈ D then (ai )

n
i=1 ≺ b for some b ∈ D.

Theorem (Rounded Ideal Completion)

The poset RI(B,≺) of all rounded ideals, ordered by ⊆ is a
continuous dcpo, with basis B.

Note: RI(B(X ),≺) is just the sobrification of the c-space B(X ).



Quasi-Metric Spaces

Notions of Completion

The Formal Ball Completion

Definition

The formal ball completion S(X ) is

space of rounded ideals D ∈ RI(B(X ),≺)
. . . with zero aperture (inf{r | (x , r) ∈ D} = 0)

(. . . = Cauchy-weightedness)

with Hausdorff-Hoare quasi-metric

d+
H(D,D ′) = sup(x ,r)∈D inf(y ,s)∈D′ d+((x , r), (y , s))

Theorem

B(S(X )) ∼= RI(B(X ))

Proof. iso maps (D, r) to D + r . . . as expected.



Quasi-Metric Spaces

Notions of Completion

Comparison with Cauchy Completion

—

(xi , ri)i∈I

this is a
Imagine

of formal balls

a Cauchy net
(xi)i∈I is

chain
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Notions of Completion

Comparison with Cauchy Completion

—

(xi , ri)i∈I

family
this is a directed
Imagine

of formal balls

a Cauchy net
(xi)i∈I is
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Notions of Completion

Comparison with Cauchy Completion

—

Now

right?
with the same “limit”,

here is another



Quasi-Metric Spaces

Notions of Completion

Comparison with Cauchy Completion

of all these equivalent
directed families
—
This is a
rounded ideal.

take the union

Instead of quotienting,
(as in Smyth-completion)
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Notions of Completion

Domain-Theoretic Properties

Theorem

S(X ) is a d-algebraic Yoneda-complete space
not Smyth-complete in general

X embeds into S(X ) through ηX (x) = {(y , r) | (y , r) ≺ (x , 0)}
The d-finite elements of S(X ) are those in X .

Similar to ideal completion I(X ) of domain theory:

I(X ) = RI(X ,≤)

I(X ) is an algebraic dcpo

X embeds into I(X )

The finite elements of I(X ) are those in X



Quasi-Metric Spaces

Notions of Completion

Universal Property

Theorem

S(X ) is the free Yoneda-complete space over X .

I.e.,

S(X )

∃!h Yoneda-continuous

**
X

∀f u.cont.
//

ηX

OO

Y Yoneda-complete

Warning: morphisms:
q-metric spaces uniformly continuous maps
Yoneda-compl. qms u.c. + preserve d-limits (“Yoneda-continuity”)

(Yoneda-continuity=u.continuity in metric spaces)
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Notions of Completion

Yoneda-Completion

Let [X → R+
]1 = {1-Lipschitz maps : X → R+}, with sup

quasi-metric D(f , g) = supx∈X d(f (x), g(x)).

Let ηYX (x) = d( , x) : X → [X → R+
]1

Definition (Yoneda completion [BvBR98])

Y(X ) = Dop-closure of Im(ηYX ) in [X → R+
]1

Very natural from Lawvere’s view of quasi-metric spaces as

R+op
-enriched categories

+ adequate version of Yoneda Lemma
(. . . , i.e., ηYX is an isometric embedding)

Y(X ) also yields the free Yoneda-complete space over X



Quasi-Metric Spaces

Notions of Completion

Formal Ball and Yoneda Completion

S and Y both build free Yoneda-complete space

Corollary

S(X ) ∼= Y(X ), naturally in X

Concretely:

D ∈ S(X ) 7→ λy ∈ X · lim sup(x ,r)∈D d(y , x)

= λy ∈ X · inf↓(x ,r)∈D(d(y , x) + r)

Inverse much harder to characterize concretely
(unique extension of ηYX : X → Y(X ). . . )
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Notions of Completion

Smyth-Completeness Again (Pearl 7)

S ∼= Y is a monad on quasi-metric spaces

but not idempotent (S2(X ) 6∼= S(X ), except if X metric)

Theorem (JGL)

Let X be quasi-metric. The following are equivalent:

ηX : X → S(X ) is bijective

ηX : X → S(X ) is an isometry

X is Smyth-complete

Example: X = R+
Y-complete, not S-complete, so S(R+

) ) R+

Example: any dcpo X , with d≤(x , y) = 0 iff x ≤ y , is
Yoneda-complete, but S(X ) is ideal completion of X ( 6= X )



Quasi-Metric Spaces

Conclusion

Outline

1 Introduction

2 The Basic Theory

3 Completeness

4 Formal Balls

5 Detour: Fixed Point Theorems

6 The d-Scott Topology

7 The Quasi-Metric Space of Formal Balls

8 Notions of Completion

9 Conclusion



Quasi-Metric Spaces

Conclusion

Conclusion

Pearl 1 [Wilson31]: countably-based ⇒ hemi-metrizable

Pearl 2 [Kostanek-Waszkiewicz10]: X Yoneda-complete
iff B(X ) dcpo, iff B(X ) monotone convergence

Pearl 3 [Romaguera-Valero10]: X Smyth-complete
iff B(X ) continuous dcpo with �=≺
Pearl 4 [Waszkiewicz10, Caristi]: self-maps f controlled by potential ϕ on
Yoneda-complete space have fixed points

Better than the open ball topology, the d-Scott topology

Pearl 5 [Ali-Akbari et al. 10]: a Yoneda-complete space is
Smyth-complete iff all its points are d-finite

Pearl 6: X Smyth-complete iff B(X ) sober

S(X ) through rounded-ideal completion, ∼= Y(X )

Pearl 7: S(X ) algebraic Yoneda-complete,
but X ∼= S(X ) iff X Smyth-complete.

Formal Balls!
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