

A Few Pearls in the Theory of Quasi-Metric Spaces

Jean Goubault-Larrecq

Summer Topology Conference — July 23-26, 2013

Outline

- 1 Introduction
- 2 The Basic Theory
- 3 Completeness
- 4 Formal Balls
- 5 Detour: Fixed Point Theorems
- 6 The *d*-Scott Topology
- 7 The Quasi-Metric Space of Formal Balls

- 8 Notions of Completion
- 9 Conclusion

In memory of Paweł Waszkiewicz (1973-2011†).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

1 Introduction

- 2 The Basic Theory
- 3 Completeness
- 4 Formal Balls
- 5 Detour: Fixed Point Theorems
- 6 The *d*-Scott Topology
- 7 The Quasi-Metric Space of Formal Balls

- 8 Notions of Completion
- 9 Conclusion

Metric Spaces

Definition (Metric)

$$x = y \Leftrightarrow d(x, y) = 0$$

$$d(x,y) = d(y,x)$$

$$d(x,y) \leq d(x,z) + d(z,y)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Quasi-Metric Spaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Hemi-Metric Spaces

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Goals of this Talk

- 1 Quasi-, Hemi-Metrics a Natural Extension of Metrics
- 2 Most Classical Theorems Adapt

... proved very recently.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

3 Formal Balls!

Outline

- 1 Introduction
- 2 The Basic Theory
- 3 Completeness
- 4 Formal Balls
- 5 Detour: Fixed Point Theorems
- 6 The *d*-Scott Topology
- 7 The Quasi-Metric Space of Formal Balls

- 8 Notions of Completion
- 9 Conclusion

The Open Ball Topology

As in the symmetric case, define:

Definition (Open Ball Topology)

・ロト ・聞ト ・ヨト ・ヨト

An open U is a union of open balls.

The Open Ball Topology

As in the symmetric case, define:

Definition (Open Ball Topology)

An open U is a union of open balls.

... but open balls are stranger.

Note: there are more relevant topologies, see later.

(日)、

The Specialization Quasi-Ordering

Definition (\leq)

Let $x \leq y$ iff (equivalently):

every open containing x also contains y

$$d(x,y)=0.$$

This would be trivial in the symmetric case.

Example: $d_{\mathbb{R}}(x, y) = \max(x - y, 0)$ on \mathbb{R} . Then \leq is the usual ordering.

Excuse Me for Turning Everything Upside-Down...

... but I'm a computer scientist. To me, trees look like this:

イロト 不得 トイヨト イヨト

ъ

with the root on top, and the leaves at the bottom.

Excuse Me for Turning Everything Upside-Down...

NRIA

... but you should really look at hills this way:

Symmetrization

Definition (d^{sym})

If d is a quasi-metric, then

$$d^{sym}(x,y) = \max(d(x,y), \underbrace{d(y,x)}_{d^{op}(x,y)})$$

is a metric.

Example:
$$d_{\mathbb{R}}^{sym}(x, y) = |x - y|$$
 on \mathbb{R} .

Motto: A quasi-metric *d* describes

- a metric d^{sym}
- \blacksquare a partial ordering \leq
- and possibly more.

$$(x \leq y \Leftrightarrow d(x,y) = 0)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Pearl 1: Wilson's Theorem

Remember the following classic?

Theorem (Urysohn-Tychonoff, Early 20th Century)

For countably-based spaces, metrizability \Leftrightarrow regular Hausdorff.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof: hard.

Pearl 1: Wilson's Theorem

Remember the following classic?

Theorem (Urysohn-Tychonoff, Early 20th Century)

For countably-based spaces, metrizability \Leftrightarrow regular Hausdorff.

Proof: hard. We have the much simpler:

Theorem (Wilson31)

For countably-based spaces, hemi-metrizability \Leftrightarrow TRUE.

Proof: let $(U_n)_{n \in \mathbb{N}}$ be countable base. Define $d_n(x, y) = 1$ iff $x \in U_n$ and $y \notin U_n$; 0 otherwise. Together $(d_n)_{n \in \mathbb{N}}$ define the original topology. Then let $d(x, y) = \sup_{n \in \mathbb{N}} \frac{1}{2^n} d_n(x, y)$.

Outline

- 1 Introduction
- 2 The Basic Theory
- 3 Completeness
- 4 Formal Balls
- 5 Detour: Fixed Point Theorems
- 6 The *d*-Scott Topology
- 7 The Quasi-Metric Space of Formal Balls

- 8 Notions of Completion
- 9 Conclusion

- Completeness is an important property of metric spaces.
- Many generalizations available:
 - Čech-completeness
 - Choquet-completeness
 - Dieudonné-completeness
 - Rudin-completeness
 - Smyth-completeness
 - Yoneda-completeness
 - ...
- I was looking for a unifying notion.
- I failed, but Smyth [Smyth88] and Yoneda [BvBR98] are the two most important for quasi-metric spaces.

A Shameless Ad

Most of this in Chapter 5 of:

... a book on topology (mostly non-Hausdorff) with a view to domain theory (but not only).

Completeness in the Symmetric Case

Definition

A metric space is complete \Leftrightarrow every Cauchy net has a limit.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Basic Results in the Symmetric Case

The following are complete/preserve completeness:

■ ℝ^{sym}

```
(i.e., with d_{\mathbb{R}}^{sym}(x,y) = |x-y|)
```

- every compact metric space
- closed subspaces
- arbitrary coproducts
- countable topological products
- categorical products (sup metric)
- function spaces (all maps/u.cont./c-Lipschitz maps)

Complete Quasi-Metric Spaces

For quasi-metric spaces, two proposals:

Definition (Smyth-c. [Smyth88])	Definition (Yoneda-c. [BvBR98])
Every Cauchy net has a <i>d^{op}</i> -limit	Every Cauchy net has a <i>d</i> -limit
	- consideration and the
complete metric spaces	complete metric spaces
$ \mathbb{R}, \mathbb{R} \cup \{+\infty\}, [a, b] $ $ \mathbb{R}, \mathbb{R} \cup \{+\infty\}, [a, b] $ $ \dots \text{ with } d_{\mathbb{R}}(x, y) = \max(x - y, 0) $	
 symcompact spaces i.e., X^{sym} compact 	 Smyth-complete spaces e.g., symcompact spaces
finite products	categ./countable products
all coproducts	all coproducts

Maria 🕅 🕅 🕅 🕅 🕅

function spaces

■ function spaces (all/c-Lip.)

d-Limits

Used in the less demanding Yoneda-completeness:

Definition (Imitated from definition of directed sup)

Let $(x_n)_{n \in \mathbb{N}}$ be a Cauchy net x is a *d*-limit $\Leftrightarrow \forall y, d(x, y) = \limsup_n d(x_n, y)$.

Example: if *d* metric, *d*-limit=ordinary limit.

d-Limits

Used in the less demanding Yoneda-completeness:

Definition (Imitated from definition of directed sup)

Let $(x_n)_{n \in \mathbb{N}}$ be a Cauchy net x is a *d*-limit $\Leftrightarrow \forall y, d(x, y) = \limsup_n d(x_n, y)$.

Example: if *d* metric, *d*-limit=ordinary limit.

Example: given ordering \leq , $d_{\leq}(x, y) = \begin{cases} 0 & \text{if } x \leq y \\ 1 & \text{else} \end{cases}$:

Cauchy=eventually monotone, *d*-limit=sup. In this case, Yoneda-complete=dcpo.

d-Limits

Used in the less demanding Yoneda-completeness:

Definition (Imitated from definition of directed sup)

Let $(x_n)_{n \in \mathbb{N}}$ be a Cauchy net x is a *d*-limit $\Leftrightarrow \forall y, d(x, y) = \limsup_n d(x_n, y)$.

Example: if *d* metric, *d*-limit=ordinary limit.

Example: given ordering \leq , $d_{\leq}(x, y) = \begin{cases} 0 & \text{if } x \leq y \\ 1 & \text{else} \end{cases}$:

Cauchy=eventually monotone, *d*-limit=sup. In this case, Yoneda-complete=dcpo.

Warning: in general, *d*-limits are not limits (wrt. open ball topol.—need generalization of Scott topology [BvBR98]).

d^{op}-Limits

Used for the stronger notion of Smyth-completeness. Easier to understand topologically:

Fact

Let $(x_n)_{n \in \mathbb{N}}$ be a Cauchy net in X. Its d^{op} -limit (if any) is its ordinary limit in X^{sym} (if any).

Is there an alternate/more elegant characterizations of these notions of completeness? What do they mean?

Outline

- 1 Introduction
- 2 The Basic Theory
- 3 Completeness
- 4 Formal Balls
- 5 Detour: Fixed Point Theorems
- 6 The *d*-Scott Topology
- 7 The Quasi-Metric Space of Formal Balls

- 8 Notions of Completion
- 9 Conclusion

Formal Balls

- Introduced by [WeihrauchSchneider81]
- Characterize completeness through domain theory [EdalatHeckmann98]

... for metric spaces

- A natural idea:
 - Start all over again,
 - look for new relevant definitions of completeness
 - ... this time for quasi-metric spaces,
 - based on formal balls.

Formal Balls

Formal Balls

Definition

A formal ball is a pair (x, r), $x \in X$, $r \in \mathbb{R}^+$.

The poset $\mathbf{B}(X)$ of formal balls is ordered by

$$(x,r) \sqsubseteq (y,s) \Leftrightarrow d(x,y) \leq r-s$$

(Not reverse inclusion of corresponding closed balls)

-Formal Balls

A Theorem by Edalat and Heckmann

Theorem (EdalatHeckmann98)

Let X be metric. X complete $\Leftrightarrow \mathbf{B}(X)$ dcpo.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

🕈 🌇 INRIA

Formal Balls

Pearl 2: the Kostanek-Waszkiewicz Theorem

Systification RS INRIA

Let us generalize to quasi-metric spaces. How about defining completeness as follows?

Definition (Proposal)

Let X be quasi-metric. X complete $\Leftrightarrow \mathbf{B}(X)$ dcpo.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Why not, but...

-Formal Balls

Pearl 2: the Kostanek-Waszkiewicz Theorem

Let us generalize to quasi-metric spaces. How about defining completeness as follows?

Definition (Proposal)

Let X be quasi-metric. X complete \Leftrightarrow **B**(X) depo.

Why not, but...this is a theorem:

Theorem (Kostanek-Waszkiewicz10)

Let X be quasi-metric. X Yoneda-complete $\Leftrightarrow \mathbf{B}(X)$ dcpo.

Moreover, given chain of formal balls $(x_n, r_n)_{n \in \mathbb{N}}$, with sup (x, r):

•
$$r = \inf_{n \in \mathbb{N}} r_n$$
,

- $(x_n)_{n\in\mathbb{N}}$ is Cauchy,
- x is the *d*-limit of $(x_n)_{n \in \mathbb{N}}$.

Formal Balls

Cauchy-weightable Nets

If $(x_n, r_n)_n$ directed family of formal balls and $\inf_n r_n = 0$ then $(x_n)_n$ is Cauchy-weightable:

$$d(x_m, x_n) \leq r_m - r_n$$
 if $m \leq n$

Lemma

Every Cauchy-weightable net is (forward) Cauchy: for every $\epsilon > 0$,

 $d(x_m, x_n) < \epsilon$ for $m \le n$ large enough

Conversely, not all Cauchy nets are Cauchy-weightableCauchy-weightability implies $\sum_{n=m}^{+\infty} d(x_n, x_{n+1}) < +\infty$ now take $x_n = (-1)^n/(n+1)$ in \mathbb{R} , usual metric. However...

- Formal Balls

Cauchy \sim Cauchy-weightable

Lemma

TFAE:

Every Cauchy net has a *d*-limit (Yoneda-completeness)
 Every Cauchy-weightable net has a *d*-limit

Proof. Every Cauchy net $(x_n)_n$ has a Cauchy-weightable subnet $(x_{\alpha(E)})_E$ finite subset of *ns*, \subseteq :

- $\alpha(E)$ such that $d(x_m, x_n) < 1/2^{|E|+1}$ for all $m \le n$ above $\alpha(E)$ + $\alpha(E) \ge n$ for every $n \in E + \alpha(E) \ge \alpha(E')$ for every $E' \subsetneq E$
- Let $r_{\alpha(E)} = 1/2^{|E|}$ so $\inf_E r_{\alpha(E)} = 0$
- if $E \subseteq E'$ then $d(x_{\alpha(E)}, x_{\alpha(E')}) \le 1/2^{|E|+1} \le r_{\alpha(E)} r_{\alpha(E')}$ (distinguish cases E = E' and $|E'| \ge |E| + 1$)

By 2, $(x_{\alpha(E)})_E$ has a *d*-limit *x*. This must also be a *d*-limit of $(x_n)_n$, since Cauchy.

- Formal Balls

The Kostanek Waszkiewicz Theorem

Theorem (Kostanek-Waszkiewicz10)

Let X be quasi-metric. X Yoneda-complete $\Leftrightarrow \mathbf{B}(X)$ dcpo.

Proof (⇒). Let (x_n, r_n)_n directed family of formal balls. Let r = inf_n r_n: (x_n, r_n − r)_n directed and inf_n r_n − r = 0 so (x_n)_n Cauchy-weighted. Let x = d-limit of (x_n)_n. Now check that (x, r) = sup_n(x_n, r_n) (exercise).

-Formal Balls

The Kostanek Waszkiewicz Theorem

Theorem (Kostanek-Waszkiewicz10)

Let X be quasi-metric. X Yoneda-complete $\Leftrightarrow \mathbf{B}(X)$ dcpo.

m 📉 📈 📈 🕅 🕅

Proof (\Leftarrow **).** Let $(x_n)_n$ Cauchy-weighted by r_n . (x_n, r_n) is directed family of formal balls, hence has sup (x, r). Since $(x_n, r_n) \le (x, r)$, $r_n \ge r$. So r = 0 (= inf_n r_n). Check that x = d-limit of $(x_n)_n$, i.e., $d(x, y) = \limsup_n d(x_n, y)$:

• Note that $\limsup_n d(x_n, y) = \sup^{\uparrow} d(x_n, y) - r_n$.

For every y,
$$d(x_n, y) \le d(x_n, x) + d(x, y) \le (r_n - r) + d(x, y)$$
.
So $\sup^{\uparrow} d(x_n, y) - r_n \le d(x, y) - r = d(x, y)$.

If inequality were strict, let $s = \sup^{\uparrow} d(x_n, y) - r_n < d(x, y)$ Since $d(x_n, y) \le r_n + s$, $(x_n, r_n + s) \le (y, 0)$ Take sups: $(x, r + s) \le (y, 0)$, so $d(x, y) \le r + s = s$, contradiction.

500

Formal Balls

The Continuous Poset of Formal Balls

Let us return to metric spaces for a moment.

Theorem (EdalatHeckmann98)

Let X be metric. X complete $\Leftrightarrow \mathbf{B}(X)$ dcpo.

Formal Balls

The Continuous Poset of Formal Balls

Let us return to metric spaces for a moment.

Theorem (EdalatHeckmann98)

Let X be metric. X complete $\Leftrightarrow \mathbf{B}(X)$ dcpo. Moreover,

■ **B**(*X*) is then a continuous dcpo

and
$$(x,r) \ll (y,s) \Leftrightarrow d(x,y) < r-s$$
 (not \leq)

A typical notion from domain theory:

• way-below: $B \ll B'$ iff for every chain $(B_i)_{i \in I}$ such that $B' \leq \sup_i B_i$, then $B \leq B_i$ for some *i*.

• continuous dcpo = every *B* is directed sup of all $B_i \ll B$. Example: $\overline{\mathbb{R}}^+$ ($r \ll s$ iff r = 0 or r < s)

SI Sectification S Sectification

-Formal Balls

Pearl 3: the Romaguera-Valero Theorem

Define \prec by: $(x, r) \prec (y, s) \Leftrightarrow d(x, y) < r - s$ How about defining completeness as follows? (X quasi-metric)

Definition (Proposal)

X complete $\Leftrightarrow \mathbf{B}(X)$ continuous dcpo with way-below \prec .

Why not, but...

- Formal Balls

Pearl 3: the Romaguera-Valero Theorem

Define \prec by: $(x, r) \prec (y, s) \Leftrightarrow d(x, y) < r - s$ How about defining completeness as follows? (X quasi-metric)

Definition (Proposal)

X complete \Leftrightarrow **B**(X) continuous dcpo with way-below \prec .

Why not, but...this is a theorem:

Theorem (Romaguera-Valero10)

X Smyth-complete $\Leftrightarrow \mathbf{B}(X)$ continuous dcpo with way-below \prec .

Moreover, given chain of formal balls $(x_n, r_n)_{n \in \mathbb{N}}$, with sup (x, r):

- $r = \inf_{n \in \mathbb{N}} r_n$,
- $(x_n)_{n\in\mathbb{N}}$ is Cauchy,
- x is the d^{op} -limit of $(x_n)_{n \in \mathbb{N}}$, i.e., its limit in X^{sym} .

Formal Balls

The Gamut of Completeness Properties So Far

Spaces of formal balls is:

Outline

- 1 Introduction
- 2 The Basic Theory
- 3 Completeness
- 4 Formal Balls
- 5 Detour: Fixed Point Theorems
- 6 The *d*-Scott Topology
- 7 The Quasi-Metric Space of Formal Balls

- 8 Notions of Completion
- 9 Conclusion

INRIA RINKIA

Detour: Fixed Point Theorems

Reminder: Banach's Fixed Point Theorem

Theorem (Banach)

Let X, d complete metric with $\forall x, y, d(x, y) < +\infty$. Every c-Lipschitz map $f: X \to X$ with c < 1 has a unique fixed point.

Proof. Sequence of iterates $f^n(x_0)$ is Cauchy, for any starting point x_0 .

In quasi-metrics, need to correct the following:

c-Lipschitz does not imply preservation of d-limits

Yoneda-Continuity

Definition (Rutten96 — imitated from Scott-continuity)

Let X, Y Yoneda-complete. $f: X \to Y$ is Yoneda-continuous iff uniformly continuous + preserves *d*-limits of Cauchy nets

- Uniformly continuous \sim monotonic
- \blacksquare Cauchy net \sim directed family
- *d*-limit of Cauchy net \sim directed sup

Formal Balls to the Rescue (again)

Lemma

Let X, Y Yoneda-complete, $f: X \to Y$ c-Lipschitz. Define $\mathbf{B}^{c}(f): (x, r) \mapsto (f(x), cr)$.

f Yoneda-continuous iff $\mathbf{B}^{c}(f)$ Scott-continuous.

Proof. By Kostanek-Waszkiewicz,

d-limits of Cauchy-weightable nets \equiv directed sups of formal balls

The Banach-Rutten Fixed Point Theorem

Theorem (Rutten 96)

Let X, d Yoneda-complete with $\forall x, y, d(x, y) < +\infty$. Every c-Lipschitz Yoneda-continuous map $f : X \to X$ with c < 1 has a unique fixed point.

Proof. Iterates of formal balls $\mathbf{B}^{c}(f)^{n}(x_{0}, r_{0})$ form a chain. ... need *c*-Lipschitz to ensure $(x_{0}, r_{0}) \leq \mathbf{B}^{c}(f)(x_{0}, r_{0})$ for some r_{0} large enough $(\geq d(x_{0}, f(x_{0}))/(1 - c))$ By Kostanek-Waszkiewicz, has a sup (x, r)and $\mathbf{B}^{c}(f)(x, r) = (x, r)$ (Scott-continuity) So f(x) = x.

The Kleene-Rutten Fixed Point Theorem

Variant, not requiring *c*-Lipschitzness.

Theorem (Rutten 96)

Let X, d Yoneda-complete with $\forall x, y, d(x, y) < +\infty$. Every Yoneda-continuous map $f: X \to X$ such that $x_0 \leq f(x_0)$ has a least fixed point above x_0

Proof. Iterates of formal balls $\mathbf{B}^{c}(f)^{n}(x_{0}, r_{0})$ form a chain

By Kostanek-Waszkiewicz, has a sup
$$(x, r)$$

and $\mathbf{B}^{c}(f)(x, r) = (x, r)$ (Scott-continuity)
So $f(x) = x$.

The Bourbaki-Witt Theorem

Note the pattern:

Existence of a poset-theoretic fixed point on formal balls implies existence of a fixed point in X

Let's use the following:

Theorem (Bourbaki-Witt)

Let Φ be an inductive poset (a dcpo). Every inflationary map $g: \Phi \to \Phi$ has a fixed point above any given $a \in \Phi$.

Note. Inflationary $= x \le g(x)$ for every x. Monotonicity not required.

Pearl 4: the Caristi-Waszkiewicz Theorem

A potential map $\varphi \colon X \to \mathbb{R}^+ = (\ldots \sim \text{lower semi-continuity})$ for every Cauchy net $(x_n)_n$ with *d*-limit $x, \varphi(x) \leq \liminf_n \varphi(x_n)$

Theorem (Waszkiewicz 10, generalizing Caristi)

Let X be Yoneda-complete, f an arbitrary map : $X \to X$, φ a potential map such that $\varphi(f(x)) + d(x, f(x)) \le \varphi(x)$. Then f has a fixed point.

Proof. By Kostanek-Waszkiewicz, $\mathbf{B}(X)$ dcpo. Since φ potential, $\Phi = \{\text{formal balls } (x, r) \text{ with } r \ge \varphi(x)\}$ closed under directed sups, hence dcpo.

Let $f'(x,r) = (f(x), r - \varphi(x) + \varphi(f(x))).$

Inequality assures well-defined, $f' \colon \Phi \to \Phi$, and inflationary.

By Bourbaki-Witt, f'(x, r) = (x, r) for some (x, r).

Outline

- 1 Introduction
- 2 The Basic Theory
- 3 Completeness
- 4 Formal Balls
- 5 Detour: Fixed Point Theorems
- 6 The *d*-Scott Topology
- 7 The Quasi-Metric Space of Formal Balls

- 8 Notions of Completion
- 9 Conclusion

Alexandroff vs. Scott

Is the open ball topology the right one?

No

- Let $X, \leq \text{poset}$
- Define canonical quasi-metric: d(x, y) = 0 iff $x \le y$, $+\infty$ else
- Then open ball = Alexandroff (open=upward closed)
- The "right" topology is Scott: open=upward closed whose complement is closed under directed sups

The *d*-Scott Topology

Definition (*d*-Scott Topology)

= subspace topology

from the inclusion into $\mathbf{B}(X)$ with its Scott topology.

- Same idea as from Lawson's computational models
- Related but not identical with [Bonsangue, van Breugel, Rutten 98]'s generalized Scott topology on X, d (identical on algebraic Yoneda-complete spaces)

Properties of the *d*-Scott Topology

- *d*-Scott coarser than open ball (~ Scott vs. Alexandroff)
- d-Scott = open ball if (1) d metric or (2) d Smyth-complete

Proposition

If X, Y Yoneda-complete and f Lipschitz, then f Yoneda-continuous iff continuous wrt. d-Scott topologies.

Proof. *c*-Lipschitz *f* extends to

 $\mathbf{B}^{c}(f)$: $(x, r) \mapsto (f(x), cr)$ on formal balls

 \ldots Scott-continuous iff f Y-continuous.

d-Finiteness

Definition (Imitated from domain theory)

x is *d*-finite iff $d(x, _)$ Yoneda-continuous from X to $\overline{\mathbb{R}}^{+op}$ iff $d(x, y) = \liminf_{n} d(x, y_n)$ for every Cauchy $(y_n)_n$ with *d*-limit y

d-algebraic = every point is d-limit of d-finite points.

Every point is d-finite if (1) d metric or (2) d Smyth-complete
In ℝ ∪ {+∞}, d-finite points=all except +∞

Pearl 5: the Ali-Akbari Honari Pourmahdian Rezaii Theorem

Theorem

The d-Scott topology of a d-algebraic Yoneda-complete space has a basis of open balls with d-finite centers

... no wonder open ball=d-Scott if (1) d-metric or (2) d Smyth-complete since these are cases where every element is d-finite

Theorem (Ali-Akbari, Honari, Pourmahdian, Rezaii 10)

A Yoneda-complete space is Smyth-complete iff all its points are d-finite.

... hence $\mathbb{R} \cup \{+\infty\}$ *d*-algebraic Y-complete, not S-complete.

◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ / 圖 / のへで

The Gamut of Notions of Completeness

Spaces of formal balls is:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Weaker	Yoneda-complete a dcpo
	d-continuous Yoneda-complete a continuous d cpo
	d-algebraic Yoneda-complete a continuous dcpo with basis $(x, r), x d$ -finite
Stronger	Smyth-complete a continuous dcpo with $\ll = \prec$

The Gamut of Notions of Completeness

Spaces of formal balls is:

The Sorgenfrey Line

A famous counterexample in topology (a normal space whose square is not normal).

Definition

$$\mathbb{R}_\ell = ext{reals with } d_\ell(r,s) = \left\{egin{array}{cc} r-s & ext{if } r \geq s \ 1 & ext{else} \ (ext{``convergence from the right''}) \end{array}
ight.$$

- A T₂, non metrizable space (since not second-countable)
- but continuous Yoneda-complete:

$$(x,r) \ll (y,s) ext{ iff } x > y ext{ and } x - y < r - s$$

(recall $(x,r) \prec (y,s) ext{ iff } d_\ell(x,y) < r - s)$

- Not Smyth-complete
- Not even *d*-algebraic Yoneda-complete: no *d*-finite element

Outline

- 1 Introduction
- 2 The Basic Theory
- 3 Completeness
- 4 Formal Balls
- 5 Detour: Fixed Point Theorems
- 6 The *d*-Scott Topology
- 7 The Quasi-Metric Space of Formal Balls

- 8 Notions of Completion
- 9 Conclusion

The Quasi-Metric Space of Formal Balls

Instead of considering $\mathbf{B}(X)$ as a poset, let us make it a quasi-metric space itself.

Definition (Rutten96)

Let $d^+((x, r), (y, s)) = \max(d(x, y) - r + s, 0)$

Sac

Note: \sqsubseteq is merely the specialization quasi-ordering of d^+ .

INRIA INRIA

└─ The Quasi-Metric Space of Formal Balls

The C-Space of Formal Balls

Theorem

 $\mathbf{B}(X)$ (open ball topology) is a *c*-space, i.e., for all $b \in U$ open in $\mathbf{B}(X)$, $b \in int(\uparrow b')$ for some $b' \in U$

Key: closed ball around (y, s), radius $\epsilon/2$, is $\uparrow(y, s + \epsilon/2)$

 \sim locally compact, where the interpolating compact is $\uparrow b'$ [Ershov73, Erné91]

(compact saturated)

The Abstract Basis of Formal Balls

Fact (Keimel)

c-space = abstract basis

Theorem

 $\mathbf{B}(X), \prec$ is an abstract basis, i.e.:

- (transitivity) if $a \prec b \prec c$ then $a \prec c$
- (interpolation) if $(a_i)_{i=1}^n \prec c$ then $(a_i)_{i=1}^n \prec b \prec c$ for some b

C-Spaces and the Romaguera-Valero Thm (Pearl 6)

So B(X) is a c-space = an abstract basis **Note:** sober c-space = continuous dcpo with way-below \prec

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

C-Spaces and the Romaguera-Valero Thm (Pearl 6)

So B(X) is a c-space = an abstract basis Note: sober c-space = continuous dcpo with way-below \prec

Theorem (Romaguera-Valero10)

X Smyth-complete $\Leftrightarrow \mathbf{B}(X)$ continuous dcpo with way-below \prec .

C-Spaces and the Romaguera-Valero Thm (Pearl 6)

So B(X) is a c-space = an abstract basis Note: sober c-space = continuous dcpo with way-below \prec

Theorem (Romaguera-Valero10)

X Smyth-complete \Leftrightarrow **B**(X) continuous dcpo with way-below \prec .

Theorem (JGL)

X Smyth-complete $\Leftrightarrow \mathbf{B}(X)$ sober in its open ball topology.

Pearl 2 – Pearl 6 Crossover

In the same vein...

A monotone convergence space is one:

 \blacksquare that is a dcpo in its specialization order \leq

whose topology is coarser that Scott

Every sober space is monotone convergence.

Theorem (Kostanek-Waszkiewicz10)

X Yoneda-complete $\Leftrightarrow \mathbf{B}(X)$ dcpo.

Pearl 2 – Pearl 6 Crossover

In the same vein...

A monotone convergence space is one:

- \blacksquare that is a dcpo in its specialization order \leq
- whose topology is coarser that Scott

Every sober space is monotone convergence.

Theorem (Kostanek-Waszkiewicz10)

X Yoneda-complete \Leftrightarrow **B**(X) dcpo.

Theorem (JGL)

X Yoneda-complete $\Leftrightarrow \mathbf{B}(X)$ monotone convergence.

Outline

- 1 Introduction
- 2 The Basic Theory
- 3 Completeness
- 4 Formal Balls
- 5 Detour: Fixed Point Theorems
- 6 The *d*-Scott Topology
- 7 The Quasi-Metric Space of Formal Balls

- 8 Notions of Completion
- 9 Conclusion

Notions of Completion

Can we embed any quasi-metric space in a Yoneda/Smyth-complete one?

- Yes: Smyth-completion [Smyth88]
- Yes: Yoneda-completion [BvBR98]

Notions of Completion

Can we embed any quasi-metric space in a Yoneda/Smyth-complete one?

- Yes: Smyth-completion [Smyth88]
- Yes: Yoneda-completion [BvBR98]

Let us explore another way:

The Theory of Abstract Bases

A rounded ideal D in B, \prec is a non-empty subset of B s.t.:

- (down closed) if $a \prec b \in D$ then $a \in D$
- (directed) if $(a_i)_{i=1}^n \in D$ then $(a_i)_{i=1}^n \prec b$ for some $b \in D$.

Theorem (Rounded Ideal Completion)

The poset $\mathbf{RI}(B, \prec)$ of all rounded ideals, ordered by \subseteq is a continuous dcpo, with basis B.

Note: $\mathbf{RI}(\mathbf{B}(X), \prec)$ is just the sobrification of the c-space $\mathbf{B}(X)$.

The Formal Ball Completion

Definition

The formal ball completion S(X) is

- space of rounded ideals $D \in \mathbf{RI}(\mathbf{B}(X), \prec)$... with zero aperture (inf{ $r \mid (x, r) \in D$ } = 0)
 - $(\ldots = Cauchy-weightedness)$

with Hausdorff-Hoare quasi-metric

$$d_{\mathcal{H}}^+(D,D') = \sup_{(x,r)\in D} \inf_{(y,s)\in D'} d^+((x,r),(y,s))$$

Theorem

 $\mathsf{B}(\mathsf{S}(X))\cong\mathsf{RI}(\mathsf{B}(X))$

Proof. iso maps (D, r) to D + r

... as expected.

Comparison with Cauchy Completion

・ロト ・四ト ・ヨト ・ヨト

э

Comparison with Cauchy Completion

Imagine this is a directed family $(x_i, r_i)_{i \in I}$ of formal balls

 $(x_i)_{i \in I}$ is a Cauchy net

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Comparison with Cauchy Completion

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Comparison with Cauchy Completion

Instead of quotienting, (as in Smyth-completion) take the union of all these equivalent directed families

This is a rounded ideal.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Domain-Theoretic Properties

Theorem

S(X) is a d-algebraic Yoneda-complete space

not Smyth-complete in general X embeds into S(X) through $\eta_X(x) = \{(y,r) | (y,r) \prec (x,0)\}$ The d-finite elements of S(X) are those in X.

Similar to ideal completion I(X) of domain theory:

- $\blacksquare I(X) = RI(X, \leq)$
- I(X) is an algebraic dcpo
- X embeds into I(X)
- The finite elements of I(X) are those in X

Universal Property

Theorem

S(X) is the free Yoneda-complete space over X.

I.e.,

 Warning: morphisms:
 uniformly continuous maps

 q-metric spaces
 uniformly continuous maps

 Yoneda-compl. qms
 u.c. + preserve d-limits ("Yoneda-continuity")

 (Yoneda-continuity=u.continuity in metric spaces)

Yoneda-Completion

Definition (Yoneda completion [BvBR98])

 $\mathbf{Y}(X) = D^{op}$ -closure of $\operatorname{Im}(\eta_X^{\mathbf{Y}})$ in $[X o \overline{\mathbb{R}}^+]_1$

- Very natural from Lawvere's view of quasi-metric spaces as $\overline{\mathbb{R}}^{+ op}$ -enriched categories
 - + adequate version of Yoneda Lemma

(..., i.e., $\eta_X^{\mathbf{Y}}$ is an isometric embedding)

• $\mathbf{Y}(X)$ also yields the free Yoneda-complete space over X

Formal Ball and Yoneda Completion

${\boldsymbol{\mathsf{S}}}$ and ${\boldsymbol{\mathsf{Y}}}$ both build free Yoneda-complete space

Corollary

 $\mathbf{S}(X) \cong \mathbf{Y}(X)$, naturally in X

Concretely:

$$D \in \mathbf{S}(X) \mapsto \lambda y \in X \cdot \limsup_{(x,r) \in D} d(y,x)$$

= $\lambda y \in X \cdot \inf_{(x,r) \in D}^{\downarrow} (d(y,x) + r)$

Inverse much harder to characterize concretely (unique extension of η^Y_X : X → Y(X)...)

Smyth-Completeness Again (Pearl 7)

- **S** \cong **Y** is a monad on quasi-metric spaces
- but not idempotent $(S^2(X) \not\cong S(X)$, except if X metric)

Theorem (JGL)

Let X be quasi-metric. The following are equivalent:

- $\eta_X : X \to \mathbf{S}(X)$ is bijective
- $\eta_X : X \to \mathbf{S}(X)$ is an isometry
- X is Smyth-complete

Example: $X = \overline{\mathbb{R}}^+$ Y-complete, not S-complete, so $\mathbf{S}(\overline{\mathbb{R}}^+) \supseteq \overline{\mathbb{R}}^+$ **Example:** any dcpo X, with $d_{\leq}(x, y) = 0$ iff $x \leq y$, is Yoneda-complete, but $\mathbf{S}(X)$ is ideal completion of $X \ (\neq X)$

Outline

- 1 Introduction
- 2 The Basic Theory
- 3 Completeness
- 4 Formal Balls
- 5 Detour: Fixed Point Theorems
- 6 The *d*-Scott Topology
- 7 The Quasi-Metric Space of Formal Balls

- 8 Notions of Completion
- 9 Conclusion

- Conclusion

Conclusion

- Pearl 1 [Wilson31]: countably-based \Rightarrow hemi-metrizable
- Pearl 2 [Kostanek-Waszkiewicz10]: X Yoneda-complete iff B(X) dcpo, iff B(X) monotone convergence
- Pearl 3 [Romaguera-Valero10]: X Smyth-complete iff B(X) continuous dcpo with ≪=≺
- Pearl 4 [Waszkiewicz10, Caristi]: self-maps f controlled by potential φ on Yoneda-complete space have fixed points
- Better than the open ball topology, the *d*-Scott topology
- Pearl 5 [Ali-Akbari et al. 10]: a Yoneda-complete space is Smyth-complete iff all its points are *d*-finite
- Pearl 6: X Smyth-complete iff B(X) sober
- **S**(X) through rounded-ideal completion, \cong **Y**(X)
- Pearl 7: S(X) algebraic Yoneda-complete, but X ≅ S(X) iff X Smyth-complete.

Formal Balls!

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの