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Quasi-Metric Spaces

L Introduction

Metric Spaces

ee— Definition (Metric)

B x=y&dxy)=0
Center m d(x,y) =d(y,x)

f m d(x,y) < d(x,z) +d(z,y)
Radius
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Quasi-Metric Spaces

Definition (Quasi-Metric)

mx=y&dxy)=0
Center - _

I il

, m d(x,y) < d(x,2) +d(z,y)
Radius
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L Introduction

Hemi-Metric Spaces

Definition (Hemi-Metric)

mx=y=d(x,y)=0
Center - _

I il

, m d(x,y) < d(x,2) +d(z,y)
Radius
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Goals of this Talk

Quasi-, Hemi-Metrics a Natural Extension of Metrics

Most Classical Theorems Adapt
. proved very recently.

Formal Balls!
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The Open Ball Topology

As in the symmetric case, define:

Definition (Open Ball Topology)

An U is a union of open
balls.




Quasi-Metric Spaces S K(’fV’
LThe Basic Theory

The Open Ball Topology

As in the symmetric case, define:

i

Definition (Open Ball Topology)

An U is a union of open
balls.

but open balls are stranger.

Note: there are more relevant topolo-
gies, see later.



Quasi-Metric Spaces
LThe Basic Theory

The Specialization Quasi-Ordering

Definition (<)

Let x < y iff (equivalently):
m every open containing x also contains y
m d(x,y) =0.

This would be trivial in the symmetric case.

Example: dr(x,y) = max(x — y,0) on R.
Then < is the usual ordering.
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Excuse Me for Turning Everything Upside-Down. . .

...but I'm a computer scientist. To me, trees look like this:

with the root , and the leaves
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Excuse Me for Turning Everything Upside-Down. . .

... but you should really look at hills this way:

i
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Symmetrization

Definition (d®™)

If d is a quasi-metric, then

dsym(X,_)/) = max(d(x,y), d(y,X))

doP(x.y)
is a
Example: d2"(x,y) = |x — y| on R.
Motto: A quasi-metric d describes
® a metric d¥"
m a partial ordering < (x<y<&dxy)=0)

m and possibly more.
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Pearl 1: Wilson's Theorem

Remember the following classic?

Theorem (Urysohn-Tychonoff, Early 20th Century)

For countably-based spaces, & regular Hausdorff.

Proof: hard. O
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Pearl 1: Wilson's Theorem

Remember the following classic?

Theorem (Urysohn-Tychonoff, Early 20th Century)

For countably-based spaces, & regular Hausdorff.

Proof: hard. O
We have the much simpler:

Theorem (Wilson31)

For countably-based spaces, & TRUE.

Proof: let (U,),cy be countable base.

Define dn(x,y) = 1iff x € U, and y & Up; 0 otherwise.

Together (d,),cy define the original topology.

Then let d(x,y) = supex 2 dn(x, y)- O
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Completeness

] is an important property of metric spaces.
m Many generalizations available:
m Cech-completeness
Choquet-completeness
Dieudonné-completeness
Rudin-completeness
Smyth-completeness
Yoneda-completeness

m | was looking for a

m | failed, but [Smyth88] and [BvBR98] are the
two most important for quasi-metric spaces.
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A Shameless Ad

Most of this in Chapter 5 of:

. a book on topology (mostly non-Hausdorff)
with a view to domain theory (but not only).
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Completeness in the Symmetric Case

A metric space is & every net has a limit.
Xn
x € Definition (Cauchy)
X % X
 ER A XX XK K0 Ye > 0,
A VS x for i < j large enough,
y d(xi, xj) < €
XX ,
« X le.,

limsup;<; d(xi,x;) =0




Quasi-Metric Spaces
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Basic Results in the Symmetric Case

The following are complete/preserve completeness:

L] (i.e., with d2™(x,y) = |x — y|)
m every metric space
[

arbitrary

(]
m countable topological
m categorical (sup metric)
L]

(all maps/u.cont./c-Lipschitz maps)
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Complete Quasi-Metric Spaces

For metric spaces, two proposals:

Definition (Smyth-c. [Smyth88]) [ Definition (Yoneda-c. [BvBR98])

Every Cauchy net has a Every Cauchy net has a
m spaces (] spaces
ooR, Eo{ee n R, :

...with  dr(x,y) = max(x — y,0)

m spaces (] spaces
i.e., X*™ compact e.g., symcompact spaces

] m categ./countable

m all = all

m funetion-spaees L] (all/c-Lip.)
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d-Limits

Used in the less demanding -completeness:

Definition (Imitated from definition of directed sup)

Let (xn),en be a Cauchy net
X is a < Vy, d(x,y) = limsup, d(xn, y).

Example: if d , d-limit=
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d-Limits

Used in the less demanding -completeness:

Definition (Imitated from definition of directed sup)

Let (xn),en be a Cauchy net

X is a & Vy, d(x,y) = limsup, d(x,, y).
Example: if d , d-limit=

Lo . _J 0 ifx<Zy
Example: given ordering <, d<(x,y) = { 1 else

Cauchy=eventually monotone, d-limit=
In this case, Yoneda-complete=
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L Com pleteness

d-Limits

Used in the less demanding -completeness:

Definition (Imitated from definition of directed sup)

Let (xn),en be a Cauchy net
X is a < Vy, d(x,y) = limsup, d(xn, y).

Example: if d , d-limit=
i <
Example: given ordering <, d<(x,y) = { (1) zs’; Sy

Cauchy=eventually monotone, d-limit=
In this case, Yoneda-complete=

Warning: in general, d-limits are not limits (wrt. open ball
topol.—need generalization of Scott topology [BvBR98]).
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d°P-Limits

Used for the stronger notion of -completeness.
Easier to understand topologically:

Let (xp),cn be a Cauchy net in X.
Its (if any) is its ordinary limit (if any).

Is there an alternate/ characterizations of these
notions of completeness? What do they mean?
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Formal Balls

m Introduced by [WeihrauchSchneider81]

m Characterize completeness through
[EdalatHeckmann98|

. for metric spaces
m A natural idea:
m Start all over again,
m look for new relevant definitions of completeness

. this time for spaces,
m based on formal balls.
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Formal Balls

Definition
A is a pair (x,r), x € X, r e RT.

The poset B(X) of formal balls is
ordered by

X

s
N

(X7r)g(y75)<:>d(xay)§r_s

( reverse inclusion of " (x,r)
corresponding closed balls)
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A Theorem by Edalat and Heckmann

Theorem (EdalatHeckmann98)
Let X be metric. X < B(X)
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L Formal Balls

Pearl 2: the Kostanek-Waszkiewicz Theorem

Let us generalize to metric spaces.
How about defining completeness as follows?

Definition (Proposal)
Let X be metric. X < B(X)

Why not, but. ..
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Pearl 2: the Kostanek-Waszkiewicz Theorem

Let us generalize to metric spaces.
How about defining completeness as follows?

Definition (Proposal)

Let X -be st metrie X comatos B -depe-

Why not, but. .. this is a theorem:

Theorem (Kostanek-Waszkiewicz10)

Let X be quasi-metric. X -complete < B(X)

Moreover, given chain of formal balls (x, rn),cn, With sup (x, r):
mr=infuen o,
B (Xp) ey is Cauchy,

m x is the of (Xn) pen-
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Cauchy-weightable Nets

If (Xn, ra), directed family of formal balls inf,r,=0
then (x,),, is :

d(XmyXn) < Fm—rtn ifm<n

Lemma

Every Cauchy-weightable net is (forward) : for every € > 0,

d(Xm,xn) < € for m < n large enough

Conversely, Cauchy nets are Cauchy-weightable
... Cauchy-weightability implies 3> d(xp, xp11) < +00
now take x, = (—1)"/(n+ 1) in R, usual metric.
However. . .
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L Formal Balls

Cauchy ~ Cauchy-weightable

TFAE:
Every Cauchy net has a d-limit (Yoneda-completeness)
Every Cauchy net has a d-limit

Proof. Every Cauchy net (x,), has a Cauchy-weightable subnet
(Xa(E))E finite subset of ns, C-

m a(E) such that d(xm, x,) < 1/2/E1%1 for all m < n above a(E)
+ a(E) > nforevery n € E + a(E) > a(E’) for every E' C E

m Let ryg) = 1/2|E| —soinfgryEg) =0

m if E C E' then d(xu(£), Xa(£7)) < 1/21E+1 < ra(E) = To(E")
(distinguish cases E = E" and |E’| > |E| + 1)
By 2, (Xa(£))E has a d-limit x.
This must also be a d-limit of (x,),, since Cauchy. O
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The Kostanek Waszkiewicz Theorem

Theorem (Kostanek-Waszkiewicz10)

Let X be quasi-metric. X -complete < B(X)

Proof (=). Let (xp, ry)n directed family of formal balls.

Let r = inf, ry: (Xn, rn — r)n directed inf,r,—r=20
so (xn)n Cauchy-weighted.

Let x = d-limit of (x,),.

Now check that (x, r) = sup,(xn, r,) (exercise).
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The Kostanek Waszkiewicz Theorem

Theorem (Kostanek-Waszkiewicz10)

Let X be quasi-metric. X -complete < B(X)

Proof (<). Let (x,), Cauchy-weighted by r,.

(Xn, ) is directed family of formal balls, hence has sup (x, r).
Since (Xn, ra) < (x,r), rp>r. Sor=0 (=inf, r,).

Check that x = d-limit of (x,)n, i.e., d(x,y) = limsup, d(xn, y):

m Note that limsup, d(x,,y) = sup’ d(x,, y) — .

m For every y, d(xn,y) < d(xa, x) +d(x,y) < (rs — r) + d(x, y).
So sup’ d(xn,¥) — ra < d(x,y) — r = d(x,y).

m If inequality were strict, let s = sup’ d(x,,y) — r, < d(x,y)
Since d(xn,y) < ra+s, (Xn, ra+5) < (y,0)
Take sups: (x,r+5s) < (y,0),so d(x,y) <r+s=s,
contradiction. O]
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The Continuous Poset of Formal Balls

Let us return to metric spaces for a moment.

Theorem (EdalatHeckmann98)
Let X be metric. X < B(X)
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The Continuous Poset of Formal Balls

Let us return to metric spaces for a moment.

Theorem (EdalatHeckmann98)

Let X be metric. X < B(X) . Moreover,
m B(X) is then a dcpo
mand (x,r) < (y,s) & d(x,y)<r—s (not <)

A typical notion from domain theory:

] : B < B’ iff for every chain (B;);., such that
B’ < sup; B;, then B < B; for some i.
[ dcpo = every B is directed sup of all B; < B.

Example: R (r<siffr=0o0rr<s)
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Pearl 3: the Romaguera-Valero Theorem

Define < by: (x,r) < (y,s) & d(x,y)<r—s
How about defining completeness as follows? (X metric)

Definition (Proposal)
X & B(X)

Why not, but. ..
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Pearl 3: the Romaguera-Valero Theorem

Define < by: (x,r) < (y,s) & d(x,y)<r—s
How about defining completeness as follows? (X metric)

Definition (Proposal)

Y

&
AY ~7

Why not, but. .. this is a theorem:

Theorem (Romaguera-Valerol0)

X -complete < B(X)

Moreover, given chain of formal balls (x,, ra) e, With sup (x, r):
B r=infuen )
® (Xp) ey is Cauchy,
m x is the of (Xn)penys i-€., its limit in X7



Quasi-Metric Spaces

L Formal Balls

The Gamut of Completeness Properties So Far

Weaker

Stronger

Spaces of formal balls is:

Yoneda-complete---------———--—-— a dcpo

Smyth-complete -~ a continuous dcpo
with €=<
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Reminder: Banach's Fixed Point Theorem

Theorem (Banach)

Let X,d complete with Vx,y, d(x,y) < +oo.
Every c-Lipschitz map f: X — X with ¢ < 1 has a unique fixed
point.

Proof. Sequence of iterates "(xp) is Cauchy,
for any starting point xp. O

In quasi-metrics, need to correct the following:

m c-Lipschitz does imply preservation of d-limits
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Yoneda-Continuity

Definition (Rutten96 — imitated from Scott-continuity)

Let X, Y Yoneda-complete.

f:X—=Yis

iff uniformly continuous + preserves d-limits of Cauchy nets

m Uniformly continuous ~ monotonic
m Cauchy net ~ directed family

m d-limit of Cauchy net ~ directed sup
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Formal Balls to the Rescue (again)

Lemma

Let X, Y Yoneda-complete, f: X — Y c-Lipschitz.
Define BS(f): (x,r) — (f(x),cr).

f Yoneda-continuous iff B¢(f) Scott-continuous.

Proof. By Kostanek-Waszkiewicz,

d-limits of Cauchy-weightable nets

directed sups of formal balls
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The Banach-Rutten Fixed Point Theorem

Theorem (Rutten 96)

Let X, d Yoneda-complete with Vx,y, d(x,y) < +oo.
Every c-Lipschitz Yoneda-continuous map f: X — X with c <1
has a unique fixed point.

Proof. Iterates B<(f)"(xo, ro) form a chain.
...need c-Lipschitz to ensure (xp, ro) < B<(f)(xo, ro)
for some ry large enough (> d(xo, f(x0))/(1 — ¢))

By Kostanek-Waszkiewicz, has a sup (x, r)
and Be(f)(x,r) = (x,r) (Scott-continuity)
So f(x) = x. O
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The Kleene-Rutten Fixed Point Theorem

Variant, not requiring c-Lipschitzness.

Theorem (Rutten 96)

Let X, d Yoneda-complete with Vx,y, d(x,y) < +oo.
Every Yoneda-continuous map f: X — X such that xo < f(xp) has
a least fixed point above xg

Proof. Iterates B<(f)"(xo, ro) form a chain

By Kostanek-Waszkiewicz, has a sup (x, r)
and Be(f)(x,r) = (x,r) (Scott-continuity)
So f(x) = x. O



Quasi-Metric Spaces

LDetcur: Fixed Point Theorems

The Bourbaki-Witt Theorem

Note the pattern:

Existence of a fixed point on formal balls implies
existence of a fixed point in X

Let's use the following:

Theorem (Bourbaki-Witt)

Let ® be an inductive poset (a dcpo).
Every map g: ® — & has a fixed point above any
given a € P.

Note. Inflationary = x < g(x) for every x.
Monotonicity not required.



Quasi-Metric Spaces

LDetcur: Fixed Point Theorems

Pearl 4: the Caristi-Waszkiewicz Theorem

A map p: X - Rt = (...~ lower semi-continuity)
for every Cauchy net (x,), with d-limit x, ¢(x) < liminf, ¢(xp)

Theorem (Waszkiewicz 10, generalizing Caristi)

Let X be Yoneda-complete, f an map : X — X,
¢ a potential map such that o(f(x)) + d(x, f(x)) < ¢(x).
Then f has a fixed point.

Proof. By Kostanek-Waszkiewicz, B(X) dcpo.
Since ¢ potential, ® = {formal balls (x, r) with r > (x)} closed
under directed sups, hence dcpo.
Let f'(x, r) = (f(x), r — ¢(x) + ¢(f(x))).
Inequality assures well-defined, f': ® — &, and inflationary.
By Bourbaki-Witt, f'(x, r) = (x, r) for some (x, r). O
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Alexandroff vs. Scott

|
Is the open ball topology the right one?

No
m Let X, < poset
m Define canonical quasi-metric: d(x,y) = 0 iff x <y, +oo else
m Then open ball = Alexandroff (open=upward closed)
m The “right” topology is : open=upward closed whose

complement is closed under directed sups
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The d-Scott Topology

Definition (d-Scott Topology)

= topology
from the inclusion into B(X) with its Scott topology.

X

y -
o 4)

X

! B(X), Scott topology
(o)

m Same idea as from Lawson’s computational models

m Related but not identical with [Bonsangue, van Breugel,
Rutten 98]'s generalized Scott topology on X, d
(identical on algebraic Yoneda-complete spaces)
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Properties of the d-Scott Topology

m d-Scott coarser than open ball (~ Scott vs. Alexandroff)
m d-Scott = open ball if (1) d metric or (2) d Smyth-complete

Proposition

If X,Y Yoneda-complete and f Lipschitz, then
f Yoneda-continuous iff continuous wrt. d-Scott topologies.

Proof. c-Lipschitz f extends to
Be(f): (x,r) — (f(x), cr) on formal balls

... Scott-continuous iff f Y-continuous.
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d-Finiteness

Definition (Imitated from domain theory)

X is iff d(x, -) Yoneda-continuous from X to R
iff d(x,y) = liminf, d(x, yn)
for every Cauchy (y,)n with d-limit y
= every point is d-limit of d-finite points.
(] point is d-finite if (1) d metric or (2) d Smyth-complete

m In RU {+o0}, d-finite points=all except +o00
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Pearl 5: the Ali-Akbari Honari Pourmahdian Rezaii

Theorem

Theorem

The d-Scott topology of a d-algebraic Yoneda-complete space
has a basis of open balls with centers

... no wonder open ball=d-Scott
if (1) d-metric or (2) d Smyth-complete
since these are cases where every element is d-finite

Theorem (Ali-Akbari, Honari, Pourmahdian, Rezaii 10)

A Yoneda-complete space is Smyth-complete
iff all its points are d-finite.

...hence RU {400} d-algebraic Y-complete, not S-complete.
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The Gamut of Notions of Completeness

Weaker

Stronger

Spaces of formal balls is:

Yoneda-complete----------------- a dcpo

d-continuous Yoneda-complete-- a continuous dcpo

d-algebraic Yoneda-complete ---- & continuous dcpo with basis
(x,r), x d-finite

Smyth-complete ------------------ a continuous dcpo
with =<
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VA&l INRIA

The Gamut of Notions of Completeness

Weaker

Stronger

Spaces of formal balls is:

Yoneda-complete----------------- a dcpo

Re, de
d-continuous Yoneda-complete-- a continuous dcpo

RU {+o0} (asym.)
d-algebraic Yoneda-complete ---- & continuous depo with basis
(x,r), x d-finite

Smyth-complete --- 172 =L AE2I 0] a continuous dcpo
with =<
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The Sorgenfrey Line

A famous counterexample in topology (a normal space whose
square is not normal).

— if r>
Ry = reals with dy(r,s) = { ; ’ Ieflsre_ ]

(“convergence from the right”)

AT, metrizable space (since second-countable)
m but Yoneda-complete:

(x,r) < (y,s)iffx>yandx—y <r—s

(recall (x,r) < (y,s) iff de(x,y) <r—2)
m Not Smyth-complete

Not even d-algebraic Yoneda-complete: no d-finite element
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The Quasi-Metric Space of Formal Balls

Instead of considering B(X) as a poset, let us make it a
space itself.

Definition (Rutten96)
Let d*((x,r). (y,s)) = max(d(x,y) — r +s,0)

General case: Case (x,r) C (y, s):
d((x,r), (v,9)) (d((x,r), (v:5)) = 0)
X y = X
N s)
j (x,r) ‘ (x,r)

Note: C is merely the specialization quasi-ordering of d™.
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The C-Space of Formal Balls

B(X) (open ball topology) int(1b') |

is a ,ie., forallbe U T/b/ (X/'r)

4 g / LD =X,
open in B(,X)' 9 Gl Key: closed ball around (y,s), radius
for some b’ € U ¢/2,is 1y, s +€/2)

~ locally compact, where the
interpolating compact is 1 b
int(Q)  [Ershov73, Ernédl]

Q@ (compact saturated)
U (open)
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The Abstract Basis of Formal Balls

Definition (Reminder)

Let (x,r) < (y,s) in B(X)
& d(x,y)<r—s

< (y,s) € int(t(x,r))

Fact (Keimel)

c-space = abstract basis

B(X),< is an , e
m (transitivity) if a < b < ¢ then a < ¢

m (interpolation) if (a;)7_; < ¢ then (a;)7_; < b < ¢ for some b
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C-Spaces and the Romaguera-Valero Thm (Pearl 6)

So B(X) is a c-space = an abstract basis
Note: c-space = continuous dcpo with way-below <
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C-Spaces and the Romaguera-Valero Thm (Pearl 6)

So B(X) is a c-space = an abstract basis
Note: c-space = continuous dcpo with way-below <

Theorem (Romaguera-Valerol0)

X -complete < B(X)
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C-Spaces and the Romaguera-Valero Thm (Pearl 6)

So B(X) is a c-space = an abstract basis
Note: c-space = continuous dcpo with way-below <

Theorem (Romaguera-Valerol0)

Theorem (JGL)
X -complete < B(X) in its open ball topology.
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Pearl 2 — Pearl 6 Crossover

In the same vein. ..
A space is one:

m that is a dcpo in its specialization order <
m whose topology is coarser that Scott

Every sober space is monotone convergence.

Theorem (Kostanek-Waszkiewicz10)
X -complete < B(X)
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Pearl 2 — Pearl 6 Crossover

In the same vein. ..
A space is one:

m that is a dcpo in its specialization order <
m whose topology is coarser that Scott

Every sober space is monotone convergence.

Theorem (Kostanek-Waszkiewicz10)

Theorem (JGL)
X -complete < B(X)
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Can we embed any quasi-metric space in a
Yoneda/Smyth- one?

m Yes: Smyth-completion [Smyth88]
m Yes: Yoneda-completion [BvBR98]
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Notions of Completion

Can we embed any quasi-metric space in a
Yoneda/Smyth- one?

m Yes: Smyth-completion [Smyth88]
m Yes: Yoneda-completion [BvBR98]

Let us explore another way:

X formal balls B(X)

(domain-theoretic)
rounded ideal

completion

B(S(X)) = RI(B(X))

S(X)

formal balls
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The Theory of Abstract Bases

A D in B, < is a non-empty subset of B s.t.:
m (down closed) if a< b€ D thenae D
m (directed) if (a;);_; € D then (a;)7_; < b for some b € D.

Theorem (Rounded Ideal Completion)

The poset RI(B, <) of all rounded ideals, ordered by C is a
. with basis B.

Note: RI(B(X), <) is just the sobrification of the c-space B(X).
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The Formal Ball Completion

The S(X) is
m space of rounded ideals D € RI(B(X), <)
...with (inf{r| (x,r) € D} =0)
(...= Cauchy-weightedness)
m with quasi-metric

d;'{_(D7 D/) = SUP(x,r)eD inf(y,S)GD’ d+((X7 r)7 (.y7 5))

Theorem
B(S(X)) = RI(B(X))

Proof. iso maps (D,r) to D+ r ... as expected.
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Comparison with Cauchy Completion

T x—  Imagine
/ this is a
yd chain

T X (xi, ri )ie/
1 / of formal balls

Xi)iel is
s a Cauchy net
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Comparison with Cauchy Completion

1 %~ Imagine
/ this is a directed
i family

X (Xh ri)iel

| / of formal balls

X Xi)ic) 18
L a Cauchy net
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Comparison with Cauchy Completion

1 .. Now

| / i here is another

1 with the same “limit”,
right?
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Comparison with Cauchy Completion

1 ~ Instead of quotienting,

! (as in Smyth-completion)
I / x take the
1 / of all these equivalent
I directed families

4 This is a
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Domain-Theoretic Properties

Theorem

S(X) isa space

Smyth-complete in general
X embeds into S(X) through nx(x) ={(y,r) | (v,r) < (x,0)}
The d-finite elements of S(X) are those in X.

Similar to ideal completion I(X) of domain theory:
m I(X) =RI(X, <)
m I(X) is an algebraic dcpo
m X embeds into I(X)
m The finite elements of 1(X) are those in X
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Universal Property

S(X) is the space over X.
l.e.,
S(X)
T 3lh.Yoneda-continuous
X el
RN
- -
X - Yoneda-complete

Warning: morphisms:
g-metric spaces uniformly continuous maps
Yoneda-compl. gms  u.c. + (“Yoneda-continuity")
(Yoneda-continuity=u.continuity in metric spaces)
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Yoneda-Completion

m Let [X — RJF];[ = {1-Lipschitz maps : X — @Jr}, with sup
quasi-metric D(f, g) = sup,ex d(f(x), g(x)).
mletnY(x)=d(Lx): X > [X >R |

Definition (Yoneda completion [BvBR98])
Y(X) = D°-closure of Im(n¥) in [X = R ']y

m Very natural from Lawvere's view of quasi-metric spaces as
—4op .
R " -enriched categories
+ adequate version of Yoneda Lemma
(..., i.e, nY is an isometric embedding)

m Y (X) also yields the free Yoneda-complete space over X
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Formal Ball and Yoneda Completion

S and Y both build free Yoneda-complete space

Corollary

S(X) = Y(X), naturally in X

Concretely:
DeS(X) = Aye€X-limsup, nepd(y,x)
= Ay € X-inf(, p(d(y,x) +7)
m Inverse much harder to characterize concretely
(unique extension of ¥ : X — Y(X)...)
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Smyth-Completeness Again (Pearl 7)

ES=Yisa on quasi-metric spaces
m but not (S2(X) 2 S(X), except if X metric)

Theorem (JGL)

Let X be quasi-metric. The following are equivalent:
mx: X = S(X)is
mnx: X — S(X) isan
m X is

Example: X =R" Y-complete, not S-complete, so S(@Jr) OR"

Example: any dcpo X, with d<(x,y) =0iff x <y, is
Yoneda-complete, but S(X) is of X (# X)
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Conclusion
m Pearl 1 [Wilson31]: = hemi-metrizable
m Pearl 2 [Kostanek-Waszkiewicz10]: X Yoneda-complete

iff B(X) . iff B(X)

Pearl 3 [Romaguera-Valerol0]: X Smyth-complete

iff B(X)

Pearl 4 [Waszkiewicz10, Caristi]: self-maps f controlled by potential ¢ on
Yoneda-complete space have

Better than the open ball topology, the

Pearl 5 [Ali-Akbari et al. 10]: a Yoneda-complete space is
Smyth-complete iff all its points are

Pearl 6: X Smyth-complete iff B(X)

m S(X) through , 2 Y(X)

Pearl 7: S(X) algebraic Yoneda-complete,
but X = S(X) iff X Smyth-complete.

Formal Balls!
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