-
Recent Comments
-
Archives
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- July 2017
- June 2017
- April 2017
- February 2017
- January 2017
- October 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- January 2016
- December 2015
- October 2015
- September 2015
- July 2015
- June 2015
- May 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- September 2014
- July 2014
- June 2014
- May 2014
- March 2014
- January 2014
- December 2013
- November 2013
- October 2013
- July 2013
- June 2013
- April 2013
- February 2013
- October 2012
Meta
Category Archives: Uncategorized
Countably presented locales
Reinhold Heckmann showed the following in a very nice paper of 2014: every countably presented locale is spatial. What makes it even nicer is that he shows how tightly this is connected with the Baire property. This also gives a … Continue reading
A core-compact, non-locally compact space
Last time, I had announced that we would do Exercise V-5.25 of the red book, constructing a core-compact, yet not locally compact, space. And this is exactly what we shall do: read the full post.
Posted in Uncategorized
Comments Off on A core-compact, non-locally compact space
Bernstein subsets of R
This month, we will start to do Exercise V-5.25 of the red book (Continuous Lattices and Domains), which gives an example of a core-compact, not locally compact space. That is pretty hard to obtain, really. This month, we will do … Continue reading
Posted in Uncategorized
Comments Off on Bernstein subsets of R
On countability
Let me first wish you a Merry Christmas, and since I will not post again next week, a Happy New Year 2019 as well. I have no specific present this year, sorry… This month’s post is about a few thoughts … Continue reading
Posted in Uncategorized
Comments Off on On countability
The locale of random elements of a space
Alex Simpson has a lot of slides with very interesting ideas. One of them is what he calls the locale of random sequences. This is a terribly clever idea that aims at solving the question “what are random sequences?”, using … Continue reading
Posted in Uncategorized
Tagged frame, locale
Comments Off on The locale of random elements of a space
Projective limits of topological spaces III: finishing the proof of Steenrod’s theorem
Last time, we embarked on proving that the projective limit of a projective system of compact sober (resp., and non-empty) spaces is compact and sober (resp., and non-empty), a theorem that Fujiwara and Kato call Steenrod’s Theorem. However, instead, we … Continue reading
Posted in Uncategorized
Comments Off on Projective limits of topological spaces III: finishing the proof of Steenrod’s theorem
Projective limits of topological space II: Steenrod’s theorem
Last time, I explained some of the strange things that happen with projective limits of topological spaces: they can be empty, even if all the spaces in the given projective system are non-empty and all bonding maps are surjective, and … Continue reading
Posted in Uncategorized
Comments Off on Projective limits of topological space II: Steenrod’s theorem
Projective limits of topological spaces I: oddities
This month, let me investigate projective limits of topological spaces. That is an area of mathematics that is fraught with pitfalls, and I will describe a number of odd situations that can occur in that domain. You will have to … Continue reading
Posted in Uncategorized
Comments Off on Projective limits of topological spaces I: oddities
Another form of Stone duality
I thought I would devote my blog this month to the Domains workshop, but a sudden health problem prevented me to go there. Instead, I will talk about a curious alternative to Stone duality, which, instead of an adjunction between Top … Continue reading
Posted in Uncategorized
Comments Off on Another form of Stone duality
Dcpos and convergence spaces II: preserving products
Let us continue last month’s story. We had define various structures of convergence spaces on a dcpo, which were all admissible in the sense that their topological modification is the Scott topology. We shall see that equipping dcpos with their … Continue reading
Posted in Uncategorized
Comments Off on Dcpos and convergence spaces II: preserving products