-
Recent Comments
-
Archives
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- July 2017
- June 2017
- April 2017
- February 2017
- January 2017
- October 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- January 2016
- December 2015
- October 2015
- September 2015
- July 2015
- June 2015
- May 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- September 2014
- July 2014
- June 2014
- May 2014
- March 2014
- January 2014
- December 2013
- November 2013
- October 2013
- July 2013
- June 2013
- April 2013
- February 2013
- October 2012
Meta
Tag Archives: powerdomain
Compact semilattices without small semilattices I: interval homomorphisms, products, and the Hoare hyperspace
I have already talked about compact semilattices before, but there is a lot more to say, especially on the subject of having small semilattices or not. Zhenchao Lyu is joining me this month, and we will pursue this next month. … Continue reading
Posted in Uncategorized
Tagged compactness, continuous dcpo, Hoare hyperspace, powerdomain, semilattice, Urysohn
Comments Off on Compact semilattices without small semilattices I: interval homomorphisms, products, and the Hoare hyperspace
Strongly compact sets and the double hyperspace construction
The notion of strongly compact set is due to Reinhold Heckmann. A few months ago, I said that I would explain why the sobrification of the space Qfin(X) of finitary compact sets on a sober space X is not the … Continue reading
Posted in Uncategorized
Tagged compactness, hyperspace, powerdomain
Comments Off on Strongly compact sets and the double hyperspace construction
Topological lattices with small semilattices
I would like to explain a clever counterexample due to Jimmie Lawson in 1970, or rather a slight variant of it, pertaining to the theory of topological semilattices and to a property that crops up naturally, namely having small semilattices. … Continue reading
Posted in Uncategorized
Tagged algebra, hyperspace, lattice, monad, powerdomain, semilattice
Comments Off on Topological lattices with small semilattices
When do the upper (a.k.a., lower Vietoris) and Scott topologies coincide on the Hoare hyperspace of a space?
I would like to talk about a nifty, recent result due to Yu Chen, Hui Kou, and Zhenchao Lyu. There are two natural topologies on the Hoare hyperspace of a space X, the Scott and the lower Vietoris topology, and … Continue reading
Posted in Uncategorized
Tagged core-compactness, first-countability, hyperspace, powerdomain, Scott topology, Vietoris topology
Comments Off on When do the upper (a.k.a., lower Vietoris) and Scott topologies coincide on the Hoare hyperspace of a space?
Irredundant families, the Smyth powerdomain, the Lyu-Jia theorem, and the baby Groemer theorem
A ∩-semilattice of sets is a family of sets that is closed under finite intersections, and it is irredundant if and only if all its non-empty elements are irreducible. That sounds like a ridiculously overconstrained notion, but I will give … Continue reading
Posted in Uncategorized
Tagged compactness, core-compactness, hyperspace, powerdomain
Comments Off on Irredundant families, the Smyth powerdomain, the Lyu-Jia theorem, and the baby Groemer theorem
First-countable spaces and their Smyth powerdomain
This month, we will look at certain conditions recently found by He, Li, Xi and Zhao in 2019, and then by Xu and Yang in 2021, in order to ensure that the Smyth powerdomain Q(X) (with the Scott topology) of … Continue reading
Posted in Uncategorized
Tagged first-countability, powerdomain
Comments Off on First-countable spaces and their Smyth powerdomain
The Sorgenfrey line is not consonant
In Exercise 5.4.12 of the book, I ask the reader to prove that neither the space of rationals, Q, nor the Sorgenfrey line, Rℓ, is consonant. But the proofs I had in mind were much too simple-minded to stand any … Continue reading
Posted in Uncategorized
Tagged consonance, counterexample, powerdomain, valuation
Comments Off on The Sorgenfrey line is not consonant
Plotkin’s powerdomain and the hedgehog
There are three classical powerdomains in domain theory, named after Hoare, Smyth, and Plotkin. The first two are natural and well studied, and the third one is intricate and intriguing. To start with, there are several possible definitions for a … Continue reading
Posted in Uncategorized
Tagged counterexample, powerdomain
Comments Off on Plotkin’s powerdomain and the hedgehog
Quasi-continuous domains and the Smyth powerdomain
“Quasi-continuous domains and the Smyth powerdomain” is the title of a very nice 2013 paper by Reinhold Heckmann and Klaus Keimel. I will not talk about quasi-continuous domains in this post. Rather, I will mention three pearls that this paper … Continue reading
Posted in Uncategorized
Tagged powerdomain, quasi-continuous domain
Comments Off on Quasi-continuous domains and the Smyth powerdomain