-
Recent Comments
-
Archives
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- July 2017
- June 2017
- April 2017
- February 2017
- January 2017
- October 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- January 2016
- December 2015
- October 2015
- September 2015
- July 2015
- June 2015
- May 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- September 2014
- July 2014
- June 2014
- May 2014
- March 2014
- January 2014
- December 2013
- November 2013
- October 2013
- July 2013
- June 2013
- April 2013
- February 2013
- October 2012
Meta
Category Archives: Uncategorized
Quasi-uniform spaces II: Stably compact spaces
There is a standard result in the theory of uniform spaces that shows (again) how magical compact Hausdorff space can be: for every compact Hausdorff space X, there is a unique uniformity that induces the topology of X, and its … Continue reading
Posted in Uncategorized
Tagged quasi-uniform space, stably compact space
Comments Off on Quasi-uniform spaces II: Stably compact spaces
Quasi-Uniform Spaces I: Pervin Quasi-Uniformities, Pervin Spaces
A uniform space is a natural generalization of the notion of a metric space, on which completeness still makes sense. It is rather puzzling that I managed to avoid the subject of quasi-uniform spaces in something like the 7 years … Continue reading
Posted in Uncategorized
Tagged quasi-uniform space
Comments Off on Quasi-Uniform Spaces I: Pervin Quasi-Uniformities, Pervin Spaces
On the word topology, and beyond
Today I (Jean G.-L.) have the pleasure to have a guest, Aliaume Lopez. We are going to talk about the word topology on X*. In the book, there is a so-called Topological Higman Lemma that says that, if X is … Continue reading
Chains and nested spaces
A chain is a totally ordered poset, and a nested space is a topological space whose lattice of open sets is a chain. That may seem like a curious notion, although you might say that the Scott topology on the … Continue reading
Posted in Uncategorized
Tagged chain, continuous lattice, minimal topology, TD space, valuation
Comments Off on Chains and nested spaces
TD spaces
In any topological space, the closure of any one-element set {x} is also its downward closure ↓x with respect to the specialization preordering. A TD space is a topological space in which, for every point x, ↓x – {x} is … Continue reading
Zhao, Xi and Chen’s well-filtered, non-sober dcpo
There are several known examples of dcpos that are well-filtered, but not sober, and I have already mentioned one due to Xiaodong Jia. I would like to explain another one, due to Dongsheng Zhao, Xiaoyong Xi, and Yixiang Chen. This … Continue reading
Posted in Uncategorized
Tagged counterexample, sober space, well-filtered space
Comments Off on Zhao, Xi and Chen’s well-filtered, non-sober dcpo
Quasi-Polish spaces as rounded ideal completions
This month, a pearl by Matthew de Brecht. It is known that the rounded ideal completion of an abstract basis (a set B with a transitive, interpolative relation) is a continuous dcpo, and that all continuous dcpos can be obtained … Continue reading
Posted in Uncategorized
Tagged completion, quasi-polish space
Comments Off on Quasi-Polish spaces as rounded ideal completions
Convergence without points
Can you define convergence without mentioning points? More precisely, is there any form of Stone duality for convergence spaces, instead of just topological spaces? The short answer is yes. For the long answer, read the full post.
Posted in Uncategorized
Tagged convergence, duality, filters, Stone duality
Comments Off on Convergence without points
X. Jia’s well-filtered, non-sober dcpo
[Business as usual, despite all viruses!] Peter Johnstone once showed the existence of a dcpo J that is not sober in its Scott topology. That dcpo is not well-filtered either. Is there a dcpo that is not sober but is … Continue reading
Posted in Uncategorized
Tagged counterexample, sober space, well-filtered space
Comments Off on X. Jia’s well-filtered, non-sober dcpo
Dcpos built as graphs of functions
Let X and P be two dcpos, and let ψ be a map from X to P. When is the graph of ψ a dcpo? I will give you a funny sufficient condition, which involves the so-called d-topology, and Hausdorffness. … Continue reading
Posted in Uncategorized
Tagged d-topology, dcpo, domain-complete, quasi-polish space
Comments Off on Dcpos built as graphs of functions